
Scientific Programming 15 (2007) 235–247 235
IOS Press

Dynamic service selection in workflows using
performance data

David W. Walker∗, Lican Huang, Omer F. Rana and Yan Huang
School of Computer Science, Cardiff University, 5 The Parade, Roath, Cardiff CF24 3AA, UK

Abstract. An approach to dynamic workflow management and optimisation using near-realtime performance data is presented.
Strategies are discussed for choosing an optimal service (based on user-specified criteria) from several semantically equivalent
Web services. Such an approach may involve finding “similar” services, by first pruning the set of discovered services based
on service metadata, and subsequently selecting an optimal service based on performance data. The current implementation of
the prototype workflow framework is described, and demonstrated with a simple workflow. Performance results are presented
that show the performance benefits of dynamic service selection. A statistical analysis based on the first order statistic is used to
investigate the likely improvement in service response time arising from dynamic service selection.

1. Introduction

The Grid computing community is converging on a
service-oriented architecture in which applications are
composed from geographically-distributed, interacting
Web services, and are expressed in a workflow descrip-
tion language, typically based on XML. Such applica-
tions are often executed under the control of a work-
flow engine. Workflow techniques provide a means
for a collection of services to be combined dynamical-
ly. However, although there is broad consensus on the
overall architecture of the Grid, there are many unre-
solved issues that are still active research areas and for
which implementations are not publicly available. One
such area is the discovery and selection of services that
may be combined in a workflow.

In a service-rich environment, it is possible that mul-
tiple copies of a service may exist. For instance, there
may be multiple semantically equivalent versions of
a service on different machines, each making use of
a different implementation (such as programming lan-
guage or algorithm). Selecting an optimal service from

∗Corresponding author: Prof. David W. Walker, School of Com-
puter Science, Cardiff University, 5 The Parade, Roath, Cardiff CF24
3AA, UK. Tel.: +44 (29) 20874205; Fax: +44 (29) 20874598;
E-mail: david@cs.cf.ac.uk.

this set of equivalent services is a decision that is often
undertaken manually by a user. Most techniques for
selecting from a set of such services are determined at
design time. There is, however, little support for dy-
namically choosing a Web service as part of a workflow
enactment strategy.

This paper presents a mechanism to discover, select,
and invoke a Web service at runtime – thereby provid-
ing a means for optimizing a workflow by dynamically
binding a service name to a service instance. This is al-
so known as “just-in time scheduling”, and corresponds
to a late binding operation, whereby Web service in-
stances are resolved based on a user-defined set of opti-
mization criteria. The motivations for this work include
improving fault-resistance and performance based on
factors that cannot be determined at design time. When
one service instance fails, the workflow engine should
be able to utilize another service instance. For com-
putationally intensive Web services, selecting services
with a specific performance profile is beneficial to the
execution of the entire workflow. There are various
use scenarios that necessitate the choice of “optimal
services” only at run-time, such as an image analy-
sis/visualization service that needs to respond within a
particular time. Another scenario involves the choice
of services in a changing environment, where partic-
ular service instances may not persist over long time
periods.

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

236 D.W. Walker et al. / Dynamic service selection in workflows using performance data

Many scientific workflow applications are compute-
intensive, and may be long-running – lasting weeks or
even months. Here, the selection of “optimal” Web ser-
vices among the available ones can shorten the compu-
tation time. When running a complete scientific work-
flow application, if one service fails, the whole work-
flow must be run again. Dynamic Web service selection
involves the discovery of a list of candidate services,
and if one service fails, then the next one can be tried,
thereby avoiding the need to repeat the whole work-
flow. Scientific workflow applications may require het-
erogeneous computing resources such as supercomput-
ers, clusters, and networks of workstations/PCs. Some
applications need a guarantee of completion within a
given period of time, which requires some way of pre-
dicting the likely completion time. Therefore, dynam-
ic selection involves choosing a suitable service ac-
cording to the current conditions (such as workload on
the machine where the service is hosted) and service
performance models.

In general, it is not necessary to dynamically select
every service in a workflow. The services for which
dynamic selection will be most effective in reducing
the overall workflow makespan are those lying on the
critical path, and that are sufficiently long-running for
the benefits of dynamic selection to outweigh the over-
heads incurred. Given a detailed performance model of
a workflow it would be possible to determine its critical
path, and hence to identify appropriate candidates for
dynamic selection. Such a model might be based on
the number of operations performed by services and
the amount of data transferred between them, although
other quality-of-service factors could also be used to
weight nodes and edges in the workflow. In such cases
the relative importance of the different factors consid-
ered (for example, the communication-to-calculation
ratio) can be used to determine a single weight for each
node and edge in the workflow, or the problem can be
treated as a multivariate constraint optimization ques-
tion [16]. This approach can be used prior to workflow
execution to find which services should be selected dy-
namically. This static approach ignores the fact that de-
termining the critical path of a workflow in a dynamic,
service-rich environment can only be done at runtime,
and that the critical path may change as the workflow
executes. This leads to the predictive scheduling ap-
proach, in which an execution schedule is made at the
start of workflow execution based on currently known
or assumed conditions, but this schedule may change
at runtime as conditions change [3,17,21].

In this paper it is assumed that some procedure exists
for deciding which services will be selected dynami-

cally – for sufficiently simple workflows this may be
done manually. As discussed in Section 4.1, a Proxy
Service is used as a placeholder for a service that is
to be dynamically selected in a workflow, and service
selection is performed through interaction of this Proxy
Service with a Discovery Service and an Optimisation
Service.

The structure of the rest of this paper is as follows.
In Section 2 the motivation of our research is presented,
and models of service binding are discussed. Section 3
discusses related work. In Section 4 our architecture for
dynamic Web service selection for workflow optimiza-
tion is presented. Section 5 outlines the implementation
of a prototype of this architecture. Section 6 describes
service selection experiments performed with our pro-
totype implementation, and discusses the performance
results. A best case analysis of dynamic service selec-
tion, based on the first order statistic, is presented in
Section 7. Finally, Section 8 presents conclusions and
ideas for future work.

2. Motivation and discussion

Services interacting in a workflow may be specified
at an abstract level. By this we mean that the semantics
of the service are specified, but not the implementation.
It is also possible that in such an abstract workflow
the syntax of the service interfaces may also not be
fully defined. Thus, an abstract workflow is similar
to an algorithm in which the processes that transform
the inputs into the desired outputs are specified without
referring to the actual software on specific computers
that will carry out those processes.

At some point before an abstract workflow can be
executed, the abstract services have to be changed in-
to concrete services by binding them to service imple-
mentations on particular machines. The details of this
conversion from an abstract to a concrete workflow are
referred to as a binding model. A key feature of the
binding model, that has a large impact on the scope for
optimizing the execution of a workflow, is when the
binding of services actually takes place. We consider
three possibilities:

1. Binding takes place at design time (i.e., when the
workflow is first composed).

2. Binding takes place immediately before execu-
tion of the workflow begins.

3. Binding takes place immediately before a service
needs to be executed.

D.W. Walker et al. / Dynamic service selection in workflows using performance data 237

These three binding models will be referred to as the
early, intermediate, and late binding models. In gen-
eral, when binding takes place some form of service
discovery and optimization may be performed. How-
ever, the longer the time between binding and exe-
cution, the greater the possibility that the information
used in the service discovery and optimization process-
es at binding will be out-of-date when execution takes
place. For example a service may no longer be avail-
able, or the service chosen at bind time may no longer
be optimal because resource utilization characteristics
have changed. Thus, the late binding model offers the
best opportunity for optimizing the performance of in-
dividual services because the most recent data is used
to make the choice. However, a disadvantage of the
late binding model is that although the performance of
individual services may be close to optimal, the over-
all performance of the whole workflow may not be.
This is because late binding does not make it possible
to take into account the time to communicate data be-
tween connected services. For example, consider two
services, A1 and A2, in an abstract workflow in which
an output port of A1 is connected to an input port of
A2. With a late binding model it may be decided that
concrete service implementations on machines M1 and
M2 are the optimal choice for A1 and A2, respectively.
However, if a large amount of data must be transferred
between the two services it may be better to choose con-
crete service implementations on machines with a high
bandwidth connection, or where A1 and A2 are hosted
on the same machine. Thus, if we want to optimize the
workflow as a whole an intermediate binding model is
better. Hybrid models can also be considered in which
early or intermediate binding is used, but if a service is
found to be unavailable at runtime then on-the-fly ser-
vice discovery and optimization is performed, as in the
late binding case. Early binding is usually referred to as
static service invocation, and late binding as dynamic
(or just-in-time) service invocation.

3. Related work

Significant work has already been undertaken in the
area of Grid-based workflow systems (see [25] for a
survey). The focus of these workflow systems varies –
ranging from specialist workflow editors/composition
tools, and portal technologies to assess the current sta-
tus of workflow execution, to semantic annotation tools
that treat workflow as a planning problem [4]. The
use of metadata to describe workflow elements and

workflow graphs [15] is becoming more common as an
aid to service discovery and selection. The Service-
Globe environment implements dynamic service selec-
tion [9] within a context framework that maintains and
manages information about the current service environ-
ment. Ontologies for describing services can also be
used in service discovery. A framework and ontology
for dynamic Web service selection is proposed in [13].
The OWL-S ontology [23] provides a description of
services that can be used to map an abstract service to
a specific service implementation [22]. Mathematical
service discovery using a “matchmaking shell” that can
be customised is described in [12]. The use of ontologi-
cal reasoners may in the future play an important role in
the discovery and scheduling of services in distributed
workflows composed from third-party services.

A software architecture for workflow processing on
the Grid is described in [14]. This architecture is large-
ly based on the ICENI environment, and considers both
static and dynamic service discovery and selection. Liu
and co-workers have proposed the use of quality-of-
service criteria to support service selection [11]. The
Pegasus system [5] uses AI planning techniques to map
abstract workflows to resources, including the reduc-
tion of the abstract workflow if intermediate results
are already available and the re-mapping of workflows
when resources become unavailable or failures occur
for other reasons [6,20]. The scheduling of activities
through the interaction of a planner and a workflow
execution system can also be extended to handle da-
ta placement tasks in addition to computational tasks.
The Stork system [10] is a scheduler for data place-
ment activities on the Grid that can recover from fail-
ures, and through interaction with the DAGMan exe-
cution system, make scheduling decisions using both
computational and data placement metrics. Zhen and
Parashar have developed the Rudder system for dynam-
ic composition of workflows, based on the use of soft-
ware agents for service discovery and selection [28],
and stress the semantic aspects of this process. Adap-
tive scheduling of workflows has also featured promi-
nently in the Grid Application Development Software
(GrADS) project [2,18].

The research presented in this paper differs from that
discussed above in that a Proxy Service is used to dis-
cover and select services based on the expected ser-
vice response time, which in turn is assumed to depend
on the processor speed and current load of the service
hosts. Our current model ignores the time taken to
transfer data to, and from, a service. The research of
Zangrilli and Lowekamp [26] addresses this issue by

238 D.W. Walker et al. / Dynamic service selection in workflows using performance data

tools
Monitoring

(history and logging data)
DatabaseDatabase

Monitoring ServiceMonitoring Service

Optimisation Service

Registry (UDDI)

Discovery ServiceDiscovery Service

Proxy Service

Fig. 1. Dynamic Service Selection for Workflow Optimization.

dynamically selecting services based on network per-
formance. A proxy service is used to passively mon-
itor network performance through the Wren monitor-
ing toolkit [27], and service selection is based solely
on the available bandwidth between the proxy and the
services.

4. Dynamic service selection architecture

In a service-rich environment, multiple copies of a
service may co-exist with different performance pro-
files. As discussed above, usually service selection can-
not be done at design time because the service response
times cannot be accurately predicted at that time. Fig-
ure 1 shows the architecture of our dynamic service se-
lection mechanism, that takes into account monitoring
information obtained from service hosts [8]. Current-
ly, the Universal Description Discovery and Integration
(UDDI) registry is used to host service descriptions.
This registry primarily provides an identifier for a ser-
vice, service metadata for a very restricted semantic
definition, and the location of the WSDL file describing
the service interface (via a URL). The database shown
in Fig. 1 contains historical data about previous service
invocations, such as the response time from a given ser-
vice. When multiple semantically equivalent copies of
a service are found by the Discovery Service, the Opti-
mization Service selects a service based on the history
database, and/or real-time data such as the processor
speed and current load of the machine hosting the ser-
vice. Such data are collected using monitoring tools
such as Ganglia [19], and/or another locally available
recording tool.

4.1. Proxy Service

The Proxy Service is used in a workflow script as
an adaptor for dynamically selecting and binding to a
Web service. In a workflow application, some activi-
ties are critical in terms of their execution time or fault-
tolerance properties. We use a Proxy Service to act as
a place holder for such services, and allow them to be
bound to a physical instance of a service. Among these
semantically equivalent services an optimal service is
selected and invoked, and its output is passed to the next
activity in the workflow. The Proxy Service is itself a
Web service. The parameters passed to the Proxy Ser-
vice include service metadata such as: queryMethod
which specifies the query mechanism used by the Dis-
covery Service to search for services; optimizationMeta
which gives a description of the problem-specific op-
timization model being used; optimizationMode which
is the mode for selecting a Web service, based on pa-
rameters such as execution time, degree of trust in re-
sults, etc.; operation which corresponds to the actu-
al function performed by the late-binding service and
the parameters passed to it. serviceProxyReturn is the
returned response, and contains a reference to an end
point handler for the selected service.

If multiple workflows are executed concurrently and
use the same Proxy Service, it is possible that the Proxy
Service will become a bottleneck and any performance
advantage arising from dynamic service selection may
be lost. In such cases more than one Proxy Service
could be made available for use by the workflows. The
Proxy Service instance used by a workflow could be
fixed at design time, or by using a simple algorithm
(such as random selection) at runtime.

4.2. Discovery Service

The queryMethod is used by the Discovery Service
to find and filter the services available. There are three
methods: byNAME, byMETA and byONTOLOGY.
The byNAME method is used to query all semanti-
cally equivalent services with a specified name. The
byNAME method would typically be used where the
services are registered by the same business entity but
with different ways to access the service (i.e., the ex-
istence of different bindingTemplates in UDDI). No
extensions are needed to the information contained in
the UDDI registry. The byMETA method is used to
query all services by examining the service metadata.
The byMETA method would typically be used where
all service providers conform to a particular metada-

D.W. Walker et al. / Dynamic service selection in workflows using performance data 239

ta specification, and have the ability to publish their
own services in the UDDI registries. By using such
metadata, the Discovery Service can find semantical-
ly equivalent services. This method needs to register
metadata information in the UDDI registry by a method
method similar to that of Miles et al. [15]. Service
properties include service name, service ID, list of op-
eration names, operation IDs, and their input, as well
as output, and data types. These items are registered
in the vector of description entities in the business ser-
vice entity. The byONTOLOGY method is used to
search for all semantically equivalent services based
on a description processed by an ontological reasoner.
This is usually referred to as semantic matchmaking,
and would typically be used where there are many ser-
vice providers who publish their service descriptions
according to the schema encoded in a service ontology.
The service providers are loosely connected or without
any relationship. Currently only the byNAME method
has been implemented in the Discovery Service of our
prototype implementation.

4.3. Optimization service

The input to the Optimization Service is the list of
semantically equivalent services – and the output is the
“best” service based on the criteria identified by the us-
er. The Optimization Service uses real-time data or pre-
viously recorded historical data to make this selection
from the candidate services.

When the Proxy Service receives the end point refer-
ence of the selected service returned by the Optimiza-
tion Service, it invokes the selected service dynamical-
ly. The WSDL file is downloaded and parsed. The
input/output parameters to/from the selected Web ser-
vice are marshalled via the Proxy Service. The actual
contents of the input and output data structures are de-
scribed in XML. We may specify adaptors to transform
the String type of input or output data of a Proxy Ser-
vice into various data types to match the ports of oth-
er Web services which link the Proxy Service to other
services in the workflow script.

The Proxy Service supports the fault-tolerant exe-
cution of workflow scripts. If a service fails, then an
alternative semantically equivalent service will be sub-
stituted. As the Proxy Service is independent of the
workflow engine used, specific logging data can be ob-
tained and stored. Such data includes the identity of
the Web service(s) that were invoked and the source of
the input data, for instance. Scientists can judge the
trustworthiness of the scientific conclusions obtained

(such as UDDI)
Registry services

Configuration

Workflow
 script

 script

User

Converter

Proxy

Web service instance

Optimisation Service

ActiveBPEL
workflow engine

Discovery Service

Fig. 2. Architecture of the WOSE system.

through the execution of the workflow by examining
the logged data.

Figure 2 describes the overall architecture of the sys-
tem. A user provides a workflow script and a config-
uration script. The workflow script may be translated
into an XML description that is appropriate for the par-
ticular workflow engine being used – in this instance
ActiveBPEL.1 The workflow engine then interacts via
the Proxy Service with the Discovery and Optimization
Services.

Figure 3 shows the sequence diagram for workflow
execution, which integrates the Proxy Service into the
workflow and performs service discovery and selection.
As shown in Fig. 3, the workflow is first deployed into
the workflow engine. Optionally the workflow script
may first be converted by an XSLT script into a form
that can be understood by the workflow engine – this
capability has previously been described in [7]. When
a client invokes the workflow some of the services are
invoked through the Proxy Service and some are not.
In the latter case the workflow engine invokes the ser-
vice directly and receives back the result, as shown by
interactions 2A and 3A in Fig. 3. If a service is to be
invoked through the Proxy Service then the workflow
engine first invokes the Proxy Service by passing it the
information needed to perform the service discovery
and selection phases. This is shown by step 2 in the
figure. The Proxy Service then invokes the Discovery
Service (step 3), which returns a list of services ca-
pable of satisfying the service request (step 4). The
Proxy Service then invokes the Optimisation Service
and passes to it the list of candidate services (step 5). In

1http://www.active-endpoints.com.

240 D.W. Walker et al. / Dynamic service selection in workflows using performance data

Fig. 3 the Optimisation Service queries the Monitoring
Service and receives back performance data about the
service hosts (steps 6 and 7), which it then uses to select
the service to be invoked from the list of candidates.
An end-point reference to the selected service is then
passed back to the Proxy Service (step 8). The Proxy
Service then invokes the selected service and receives
back the result (steps 9 and 10), which is then returned
to the workflow engine (step 11). On completion of the
workflow the final output is returned to the client that
initiated the execution of the workflow (step 12).

The fact that the Proxy Service acts as an intermedi-
ary in passing the results from the invoked service back
to the workflow engine imposes requirements on the
capabilities of the Proxy Service – for example, it must
have sufficient storage to handle the data from any ser-
vice it is required to invoke. Optimizations in the trans-
fer of data between services have not been examined
in the work presented here. However, there is clearly
scope to improve this aspect of workflow execution by
avoiding unnecessary steps in data handling.

5. Implementation

Our framework for dynamic Web services includes
service discovery, selection, and invocation. Web ser-
vices are discovered that match the requirements iden-
tified by the user in the configuration file sent to the
workflow engine (see Fig. 2). Then the best service
is selected according to the performance data, and the
selected service is invoked. This service selection sce-
nario happens at run-time, during the execution of a
workflow application. As discussed in Section 4.1, the
Proxy Service plays an important role in the service se-
lection scenario. The invocation of the Proxy Service is
done by passing it an XML description document that
contains an abstract definition of the required service.

The following list presents the scenario of a typical
dynamic Web service selection procedure.

– Step1: The Proxy Service receives an XML doc-
ument describing a required service.

– Step2: The document is sent to a Discovery Ser-
vice which returns a list of matching services.

– Step 3: If the list of matching services is empty go
to step 7.

– Step 4: Send the service list to the Optimization
Service which selects the service with the best
performance using its own performance selection
mechanism and available performance data. The
Optimisation Service returns the selected service.

– Step 5: Invoke the service. If the invocation is
successful, go to step 7.

– Step 6: Remove the failed service from the service
list and then update the logging data by adding the
failure record into it. Go to step 3.

– Step 7: Stop

The Optimization Service selects a service from a
list of services by using the service performance data
collected by a Monitoring Service. A Monitoring Ser-
vice obtains performance data for a particular service
using monitoring tools. A database may be used to
keep historical performance data for use in performance
prediction. Currently the Optimization Service selects
the service with the highest “performance factor”. The
performance factor, which involves only the CPU speed
and load of the machine that hosts a particular service,
is defined as follows:

CPUspeed
(LoadAverage + 1)

The appearance of the CPU speed in the performance
factor takes into account its processing power. The load
average is a measure of the number of active jobs on
a system. When the load average is high a system is
expected to respond more slowly.

It should be noted if a failed service instance is re-
moved from the service list in step 6, this means that it
will be not be considered further in the current service
selection process. The next time the Proxy Service is
used to select a service any matching services that had
previously failed will be considered again for selection.
Thus, if a service is temporarily unavailable it will au-
tomatically become a candidate for selection once it
becomes available again. To permanently exclude a
service from future use it must be removed from the
service registry.

6. Dynamic workflow experiments

The example used here makes use of three Web ser-
vices. The invokebrowser service retrieves raw protein
data from an input URL. This data is then passed to
the getproteinseq service which extracts a protein se-
quence from it. This protein sequence is next input to
the blastall service which searches for matches to the
sequence in a protein database by using the Basic Local
Alignment Search Tool (BLAST). These matches are
then returned to the client that invoked the workflow.
Thus, the workflow consists of a linear arrangement
of three services. The invokebrowser and getprotein-

D.W. Walker et al. / Dynamic service selection in workflows using performance data 241

Workflow

Workflow deploy

XSLT converter

Client interface Workflow
engine Web service Proxy Service Discovery

Service
Optimisation

Service
Monitoring

Service

1. Request
2A. Direct invocation

3A. Direct result

2. Dynamic invocation through proxy
3. Service query

4. List of services

5. List of services
6. Performance query

7. Performance data
8. Selected service9. Invoke service

10. Result

11. Result through proxy
12. Result

Fig. 3. Sequence of messages for workflow incorporating dynamic Web service selection.

seq perform simple tasks that are quickly executed and
input and output small amounts of data. The blastall
service is long running, taking of the order of tens of
minutes to execute in our experiments. It also inputs
and outputs quite small amounts of data (typically a
few kbytes). In the experiments described below, the
invokebrowser and getproteinseq services are invoked
directly by the workflow engine, and the blastall ser-
vice is invoked through a Proxy Service. Multiple in-
stances of the blastall service were installed on differ-
ent machines, and a blastall service is chosen dynam-
ically from these based on realtime and recorded data
obtained from Ganglia [19]. In our workflow script, a
Proxy Service is initially used as a placeholder for a
blastall service and by interaction with the Discovery
and Optimization Services, a service is selected and
dynamically executed.

6.1. Setup

In the experiments Tomcat v5.0.12 and Axis v1.2.1
were used as Web service containers. The perfor-
mance history database used is a mySQL database (ver-
sion 4.1.12). The JUDDI registry maintained by the
Welsh e-Science Centre is used as the UDDI registry.2

2http://www.wesc.ac.uk/services/uddi/index.html.

The invokebrowser and getproteinseq services were in-
stalled on a Windows XP laptop. An instance of the
blastall service was installed on each of six identical
Linux workstations running Redhat 7.0. All instances
of the blastall service were registered in the JUDDI reg-
istry. The blastall service wraps the Java-based BLAST
algorithm3 by executing the blastall command with de-
fault arguments. The database queried by the blastall
service was downloaded from the same web site, and
contains a collection of protein sequences. The Mon-
itoring Service uses Ganglia v3.01 to retrieve realtime
performance data from service hosts. Ganglia is used
due to the significant interest in this tool within the
Grid community – however, our implementation is not
restricted to the use of this tool.

6.2. Results

In the workflow used in the experiments the param-
eters passed to a proxy service are assigned as follows:
serviceMeta is set to “blastallservice”, queryMethod to
“byNAME”, operation to “serviceblastall”, optimiza-
tionMode to “performance”, and optimizationMeta to

3Available from http://ncbi.nih.gov/blast/.

242 D.W. Walker et al. / Dynamic service selection in workflows using performance data

“NONE”. The URL parameter input to the invoke-
browser service is http://us.expasy.org/uniprot/P05131.
fas from which the service retrieves the KAPB1 BOV
IN protein sequence from the UniProt database (this is
described at http://www.expasy.org/uniprot/KAPB1
BOVIN). The input to the getproteinseq service is the
output of the invokebrowser service. The getproteinseq
service extracts the protein sequence consisting of 351
characters, where each character represents an amino
acid. The getproteinseq service then passes this char-
acter string as an input parameter to the Proxy Service.

The process of workflow execution is as follows. The
client (a simple web interface) invokes the ActiveBPEL
workflow engine. When the Proxy Service is invoked,
the six blastall service instances are retrieved from the
JUDDI registry by the Discovery Service. The Op-
timization Service then selects one of these services
based on performance data from Ganglia. The Proxy
Service then invokes the selected blastall service, and
returns results to the next activity. Finally, the Ac-
tiveBPEL engine outputs the result to the client inter-
face for display to the user.

The relationship between service response time and
the load on the service host was investigated with three
different experiments. Experiment 1 was conducted
using a single service on a remote host. The aim of this
experiment is to test if there is a correlation between
the service response time and the performance factor.
To this end we try to keep the load on the service host
constant by executing a number of long-running jobs
to create a background workload. Varying the number
of jobs allows different loads to be created on the ser-
vice host. For each instance of Experiment 1, the load
on the service host was fixed by executing a suitable
number of long-running jobs to create a background
workload. While these jobs were running the workflow
was invoked on the client machine and the response
time for the blastall service was recorded. This time is
the period from the invocation of the Proxy Service by
the workflow engine to the return of the results from
the service, and thus includes the time to run the dis-
covery and optimisation services. The load average
was recorded soon after the invocation of the proxy ser-
vice. The results of Experiment 1 are shown in Fig. 5
in which each symbol plotted represents one workflow
invocation. Although there is a correlation between the
service response time and the load average – in general
a larger load average results in a longer service response
time – there is considerable scatter in the values for any
particular load average. This arises because the experi-
ments were not carried out on dedicated machines, and

hence the background workload could not be fully con-
trolled. This reflects the type of environment in which
service hosts are often used.

Experiment 2 investigated the impact on the service
response time of a varying workload on the service
hosts. A randomly varying synthetic workload was
run on each of the six identical service hosts, and the
workflow was executed repeatedly within a loop (only
one instance of the workflow was executing at any one
time). As in Experiment 1, the blastall service was
invoked through the proxy service, and the service re-
sponse time measured from the invocation of the proxy
service to the return of the results was recorded, togeth-
er with the load average at the start of the proxy service
invocation. The results, shown in Fig. 8, are similar to
those of Experiment 1 in the sense that there is a gen-
eral trend for a larger load average at invocation time
to result in a longer service response time. Although in
both experiments there is a large scatter in the results,
it is reasonable to expect that service selection based
on the load average at invocation time would result in
a faster response than selecting a service at random.

No method can accurately predict future load if no
restrictions are placed on the use of the service hosts,
and hence any method of estimating which service host
will complete execution sooner will give the wrong an-
swer sometimes – which accounts for the scatter in the
results for Experiments 1 and 2. Experiment 3 sought
to determine if service selection based on the load aver-
age at invocation time results in a faster response than
selecting a service at random. Experiment 3 consists of
two phases. In the first phase a varying synthetic work-
load was run on one of the service hosts, and the service
response time was recorded for several successive exe-
cutions of the workflow. The average service response
time was then computed. In the second phase the same
synthetic workload was run on three service hosts. The
workflow was executed and the proxy service was used
to dynamically select the service host based on the per-
formance factor (or equivalently the load average since
the three service hosts were identical). This was re-
peated several times, and the average service response
time was computed. The average service response time
for phase 1 and phase 2 was 4252 seconds and 932
seconds, respectively. This demonstrates that dynamic
selection based on the load average at invocation time
can result in better performance.

The performance factor identified here could be mod-
ified based on data supplied by a monitoring service.
For example, if services require a large amount of mem-
ory to execute we could also use the currently available

D.W. Walker et al. / Dynamic service selection in workflows using performance data 243

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

Performance Factor

S
er

vi
ce

 r
es

po
ns

e
tim

e

Fig. 4. The correlation between service response time (in seconds) and the performance factor based on the one-minute load average.

memory, alongside load average and processor speed,
as a way to chose a host. It should be noted that the Op-
timization Service provides a reference to the service
host with the largest performance factor at the current
time. Hence, future use of a service on such a machine
may not provide identical behaviour. It may, therefore,
be a good idea to make use of a long term history of
service host performance to support service selection
decisions (also measurable with Ganglia).

7. Best case statistical analysis

The experiments discussed in Section 6.2 support
the view that dynamic service selection can reduce
service response times (and hence also the workflow
makespan), even when the service hosts are not ded-
icated to running under the control of the workflow
environment. In such circumstances third parties can
impose loads on the service hosts, making it difficult
to accurately predict the load on a host during the ex-
ecution of a service. We now consider the maximum
performance improvement that can be expected when
selecting services on non-dedicated resources. This
analysis is based on the first order statistic.

Suppose there is one service on each of N identi-
cal hosts, and that the service response time for each
service follows a probability function f(t). Thus, the
probability that the service response time is between
t and t + dt is f(t)dt. The probability distribution is
sampled N times, giving the service response time val-
ues Ti for i = 1, . . . , N . This sampling corresponds

to measuring the service response time on each of the
N service hosts at some time. The service response
times are then relabelled as Yi (i = 1, . . . , N), such that
Y1 � Y2 � · · · � YN . Yi is termed the ith order statis-
tic. Now suppose the sampling procedure is repeated
K times – that is, the following steps are repeated K
times:

1. Sample the probability distribution N times.
2. Relabel the resulting service response times so

that Y1 � Y2 � · · · � YN .

Consider the expected value of the first order statistic,
Y1, as K becomes large. This represents the best per-
formance improvement that could be achieved through
dynamic service selection, in the sense that, this would
be the average service response time if the service selec-
tion procedure always chose the fastest service host for
each of the K service invocations. This is, therefore,
a best case analysis, based on the key assumptions that
the probability distribution of service response times is
known, and is the same for all N service instances.

It can be shown that the probability function of the
ith order statistic is given by [24]:

fi(t) =
N !

(N − i)! i!
[F (t)]i−1[1−F (t)]N−if(t) (1)

where F (t) is the cumulative density function (also
known as the distribution function) defined by:

F (t) =
∫ t

−∞
f(x)dx (2)

It is instructive to carry through the evaluation of the
expected value of the first order statistic for a particular

244 D.W. Walker et al. / Dynamic service selection in workflows using performance data

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

Load Average

S
er

vi
ce

 r
es

po
ns

e
tim

e

Fig. 5. Service response time in seconds as a function of the one-minute load average for Experiment 1.

probability function. This will show the relationship
between the shape of the probability function (in partic-
ular its width) and the best performance improvement
that could be expected through dynamic service selec-
tion. For this purpose it will be assumed that the cu-
mulative density function takes the form of the Gamma
distribution:

F (t) = 1 − Γ(α, t/θ)
Γ(α)

(3)

where Γ(·) is the Gamma function, Γ(·, ·) is the upper
incomplete Gamma function, and Γ(α, 0) = Γ(α). In
this case, the probability function takes the following
form:

f(t) =
(

1
Γ(α)θα

)
tα−1 exp (−t/θ) (4)

It should be noted that the mean and variance of the
Gamma distribution are given by µ = αθ and σ 2 =
αθ2, respectively. Substituting the expressions for F (t)
and f(t) in Eqs (3) and (4) into Eq. (1), and taking
i = 1, the following expression is obtained for the
expected value of the first order statistic:

E1(N, α, θ) = Nθ

∫ ∞

0

x

(
Γ(α, x)
Γ(α)

)N−1

(5)
xα−1 exp (−x)

Γ(α)
dx

Equation (5) shows that the first order statistic de-
pends linearly on θ, and nonlinearly on N and α.

Since α = (µ/σ)2 and θ = σ2/µ, the expected value
of the first order statistic can also be expressed as a
function of the number of service instances, N , and

the mean and variance of the Gamma distribution, that
is, as E1(N, µ, σ). The behaviour of E1(N, µ, σ) will
now be examined when the mean, µ, is kept constant
and the variance, σ2, is varied, for different values of
N . Table 1 shows how E1(N, µ, σ) decreases as the
number of available services, N , increases for σ = 50,
100, 200, and 300. A mean of µ = 1000 was used,
although the actual value of the mean is not important
here since if both µ and σ are scaled by the same factor,
then E1(N, µ, σ) is also scaled by that factor. Table 1
illustrates two important points:

1. As the width of the probability function increases
with the mean fixed, then E1(N, µ, σ) decreas-
es for a given value of N . This is to be expect-
ed since the wider the probability function the
greater the chance of the smallest of N samples
lying far below the mean. When the probability
function is narrow even a large value of N results
in only a small decrease in E1(N, µ, σ) below the
mean value.

2. E1(N, µ, σ) falls relatively quickly for the first
few values of N , but thereafter falls only slowly.
For example, for σ = 300 the expected value of
the first order statistic falls by over 40% from the
mean value for N = 10. However, using N = 20
service instances decreases the expected value by
only an additional 7%.

Thus, Table 1 shows that for a narrow probability func-
tion no method of service selection will result in sig-
nificantly faster performance when compared with ran-
dom selection. In addition, for a wider probabili-
ty function, when service selection based on perfor-

D.W. Walker et al. / Dynamic service selection in workflows using performance data 245

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1000

2000

3000

4000

5000

6000

Load Average

S
er

vi
ce

 r
es

po
ns

e
tim

e

Fig. 6. Service response time in seconds as a function of the one-minute load average for Experiment 2.

mance prediction is likely to be worthwhile, adding
more than a certain number of service hosts will not
improve performance by very much, and so will not be
cost-effective. The scalability of the service discovery
and selection procedures is not, therefore, much of an
issue, because unless the probability function is very
broad only a modest number of service hosts (maybe
10 to 20) need to be used. However, in other cir-
cumstances the addition of extra service hosts may be
worthwhile. For example, if the total amount of work
performed per unit time by the set of service hosts is
constant, then the addition of service hosts will reduce
the mean service response time, µ, and hence result
in improved performance. Similarly, if multiple work-
flows are concurrently accessing the same set of equiv-
alent services, adding more service hosts may result
in improved throughput. This improvement arises be-
cause while a particular service instance is running the
load on that host increases, so it is less likely that the
same service instance will be selected by a different
workflow for that period. Thus, the service selection
mechanism ensures a degree of load balancing across
the service hosts, and if there are more service hosts
it is less likely that any particular one will be select-
ed to concurrently execute a service instance for more
than one workflow. It should be noted, however, that
because the performance gain from dynamic selection
is O(

√
N) and the time to discover candidate services

is O(N), it is always true that if N is sufficiently large
dynamic selection will actually degrade performance.

The above discussion and analysis assumes that the
service response times are identically and independent-
ly distributed for the N service hosts, and that they

Table 1
Expected value of the first order statistic for µ = 1000

N σ = 50 σ = 100 σ = 200 σ = 300

1 1000.00 1000.00 1000.00 1000.00
2 971.80 943.65 887.73 832.64
3 957.93 916.40 835.25 757.17
4 949.01 899.02 802.45 710.97
5 942.54 886.51 779.13 678.60
6 937.51 876.83 761.28 654.11
7 933.43 868.99 746.96 634.64
8 930.01 862.45 735.08 618.61
9 927.07 856.85 724.97 605.06
10 924.51 851.98 716.21 593.39
11 922.24 847.67 708.50 583.17
12 920.21 843.82 701.64 574.11
13 918.37 840.34 695.46 566.00
14 916.69 837.17 689.85 558.66
15 915.15 834.26 684.73 551.98
16 913.73 831.58 680.02 545.86
17 912.41 829.10 675.66 540.21
18 911.18 826.79 671.62 534.98
19 910.03 824.62 667.84 530.17
20 908.95 822.59 664.30 525.57

follow the Gamma distribution. However, the follow-
ing tight lower bound on the expected value of the first
order statistic exists (see [1] and references therein):

E1(N, µ, σ) � µ − σ
(N − 1)√
2N − 1

(6)

This bound (usually referred to as the Hartley-David-
Gumbel bound) holds for any distribution, and shows
that the slow rate of decrease in the service response
time observed for the Gamma distribution applies quite
generally, since the bound decreases as O(

√
N). It is

readily confirmed that the results in Table 1 obey the
bound in Eq. (6).

246 D.W. Walker et al. / Dynamic service selection in workflows using performance data

8. Conclusions

This paper has presented a framework for dynamic
workflow management in a service-oriented environ-
ment. Services capable of fulfilling a service request
are discovered dynamically, and selection is undertak-
en using performance data. A Proxy Service is used
that acts as an adaptor to support the dynamic service
selection. In the first instance, semantically equivalent
services are chosen, based on the use of a registry ser-
vice (supported by extending UDDI). An Optimisation
Service then selects the service with the lowest predict-
ed response time, by accessing realtime performance
data provided by a monitoring service. From the ex-
perimental results presented, it can be inferred that the
strategy proposed here can improve workflow perfor-
mance through the use of realtime performance data.
A best case analysis, based on the first order statistic,
shows how the improvement in service response time
that results from dynamic service selection is related to
the width of its probability function. For a sufficiently
narrow probability function dynamic service selection
is unlikely to result in better performance than select-
ing a service at random. The analysis also shows that
as the number of service hosts increases the additional
performance benefit becomes progressively less so that
using more services is unlikely to be cost-effective.

Acknowledgements

The research described in this paper was performed
as part of the Workflow Optimisation Services for
e-Science Applications (WOSE) project, funding for
which was provided by the Core e-Science Programme
of the UK’s Engineering and Physical Sciences Re-
search Council (grant reference GR/S24886/01), and
is gratefully acknowledged. It is also a pleasure to
acknowledge helpful discussions about bounds on the
first order statistic, and related matters, with Profes-
sor Antonia Jones of the Cardiff School of Computer
Science.

References

[1] N. Balakrishnan, C. Charalambides and N. Papadatos, Bounds
on Expectation of Order Statistics from a Finite Population,
Journal of Statistical Planning and Inference 113(2003), 569–
588.

[2] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A.
Dasgupta, W. Deng, J. Dongarra, L. Johnsson, K. Kennedy, C.
Koelbel, B. Liu, X. Liu, A. Mandal, G. Marin, M. Mazina, J.
Mellor-Crummey, C. Mendes, A. Olugbile, Jignesh M. Patel,
D. Reed, Z. Shi, O. Sievert, H. Xia and A. YarKhan, New Grid
Scheduling and Rescheduling Methods in the GrADS Project,
International Journal of Parallel Programming 33(2) (June
2005), 209–229.

[3] C. Chapman, M. Musolesi, W. Emmerich and C. Mascolo,
Predictive Resource Scheduling in Computational Grids, in
Proceedings of the 21st International Parallel and Distributed
Processing Symposium, pub. IEEE Computer Society Press,
2007.

[4] Y.-H. Chen-Burger, K.-Y. Hui, A.D. Preece, P.M.D. Gray and
A. Tate, Workflow Collaboration with Constraint Solving Ca-
pabilities, Expert Update 8(1) (2005), 48–60.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity,
J.C. Jacob and D.S. Katz, Pegasus: a Framework for Map-
ping Complex Scientific Workflows onto Distributed Systems,
Scientific Programming 13(3) (2005), 219–237.

[6] E. Deelman, T. Kosar, C. Kesselman and M. Livny, What
Makes Workflows Work in an Opportunistic Environment?
Concurrency and Computation: Practice and Experience
18(10) (2006), 1187–1199.

[7] L. Huang, A. Akram, D.W. Walker, R.J. Allan, O.F. Rana
and Y. Huang, A Workflow Portal Supporting Multi-language
Interoperation and Optimisation, Concurrency and Compu-
tation: Practice and Experience (submitted December 2005,
accepted February 2007).

[8] L. Huang, D.W. Walker, Y. Huang and O.F. Rana, Dynamic
Web Service Selection for Workflow Optimization, in proceed-
ings of the UK e-Science All Hands Meeting, 2005.

[9] M. Keidl and A. Kemper, Towards Context-aware Adaptable
Web Services, in Proceedings of the 13th International World
Wide Web Conference, pub. ACM Press, 2004, 55–65.

[10] T. Kosar and M. Livny, Making Data Placement a First Class
Citizen in the Grid, in Proceedings of the 24th International
Conference on Distributed Computing Systems, 2004, 342–
349.

[11] Y. Liu, A.H. Ngu and L. Zeng, QoS Computation and Policing
in Dynamic Web Service Selection, in Proceedings of the 13th
International World Wide Web Conference, pub. ACM Press,
2004, 66–73.

[12] S. Ludwig, O.F. Rana, W. Naylor and J. Padget, Matchmaking
Framework for Mathematical Web Services, Journal of Grid
Computing 4(1) (2006), 33–48.

[13] E.M. Maximillien and M.P. Singh, A Framework and On-
tology for Dynamic Web Services Selection, IEEE Internet
Computing 8(5) (2004), 84–93.

[14] A.S. McGough, J. Cohen, J. Darlington, E. Katsiri, W. Lee,
S. Panagiotidi and Y. Patel, An End-to-end Workflow Pipeline
for Large-scale Grid Computing, Journal of Grid Computing
3(3–4) (2005), 259–281.

[15] S. Miles, J. Papay, T. Payne, M. Luck and L. Moreau, Towards
a Protocol for the Attachment of Metadata to Grid Service
Descriptions and its Use in Semantic Discovery, Scientific
Programming 12(4) (2004).

[16] Y. Patel and J. Darlington, A Novel Approach to Workload Al-
location of QoS-constrained Workflow-based Jobs in a Utility
Grid, in Proceedings of the Second IEEE International Con-
ference on e-Science and Grid Computing, 2006.

[17] R. Prodan and T. Fahringer, Dynamic Scheduling of Scientific
Workflow Applications on the Grid: a Case Study, in Proceed-

D.W. Walker et al. / Dynamic service selection in workflows using performance data 247

ings of the 2005 ACM Symposium on Applied Computing,
pub. ACM Press, 2005, 687–694.

[18] D.A. Reed and C.L. Mendes, Intelligent Monitoring for Adap-
tation in Grid Applications, Proceedings of the IEEE 93(2)
(February 2005), 426–435.

[19] F.D. Sacerdoti, M.J. Katz, M.L. Massie and D. Culler, Wide
Area Cluster Monitoring with Ganglia, in proceedings of the
2003 IEEE International Conference on Cluster Computing,
2003, 289–298.

[20] G. Singh, C. Kesselman and E. Deelman, Optimizing Grid-
Based Workflow Execution, Journal of Grid Computing 3(3–
4) (2005), 201–219.

[21] D.P. Spooner, J. Cao, S.A. Jarvis, L. He and G.R. Nudd,
Performance-aware Workflow Management for Grid Comput-
ing, The Computer Journal 48(3) (2005), 347–357.

[22] N. Srinivasan, M. Paolucci and K. Sycara, Semantic Web Ser-
vice Discovery in the OWL-S IDE in Proceedings of the 39th
Annual Hawaii International Conference on System Sciences,
2006.

[23] W3C web site, OWL Web Ontology Language for Ser-
vices, http://www.w3.org/Submission/2004/07/ (visited 10

April 2007).
[24] E.W. Weisstein, Order Statistic, from MathWorld – A Wolfram

Web Resource. http://mathworld.wolfram.com/OrderStatistic.
html.

[25] J. Yu and R. Buyya, A Taxonomy of Scientific Workflow
Management Systems for Grid Computing, Journal of Grid
Computing 3(3–4) (September 2005), 171–200.

[26] M. Zangrilli and B. Lowekamp, Transparent Optimization of
Grid Server Selection with Real-Time Passive Network Mea-
surements, in proceedings of the Third International Workshop
on Networks for Grid Applications (GridNets2006), 2006.

[27] M. Zangrilli and B. Lowekamp, Using Passive Traces of Ap-
plication Traffic in a Network Monitoring System, in Proceed-
ings of the 13th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC13), 2004, 77–86.

[28] Z. Li and M. Parashar, An Infrastructure for the Dynam-
ic Composition of Grid Service, Technical Report, Cen-
ter for Advanced Information Processing, Rutgers Univer-
sity, April 2007. Available at http://www.caip.rutgers.edu/
TASSL/Papers/rudder-tr-07.pdf.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

