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Abstract—Accurate identification of weeds plays a crucial
role in helping farmers achieve efficient agricultural practices.
An edge-cloud infrastructure can provide efficient resources for
weed detection in resource-constrained rural areas. However,
deployed applications in these areas often face challenges such as
connectivity failures and network issues that affect their quality
of service (QoS). We introduce a signal quality-aware framework
for precision agriculture that allocates weed inference tasks to
resource nodes based on the current network connectivity and
quality. Two Machine Learning (ML) models based on ResNet-
50 and MobileNetV2 are trained using the publicly available
DeepWeeds image classification dataset. A rule-based approxi-
mation algorithm is formulated to execute tasks on resource-
constrained computational nodes. We also designed a testbed
setup consisting of Raspberry Pi (RPi), personal laptop, cloud
server and Parsl environment for evaluating the framework.
Reliability of the framework is tested in a controlled setting,
under various dynamically injected faults. Experimental results
demonstrate that the proposed setup can accurately identify
weeds while ensuring high fault tolerance and low completion
time, making it a promising solution for weed management in
rural agriculture.

Index Terms—edge-cloud computing, fault tolerance, Parsl,
precision agriculture, robots, rural-Al, weed detection.

I. INTRODUCTION

ITH a rapid increase in global population, there is
Wan ever-growing need to ramp up sustainable food
production. The Food and Agriculture Organisation (FAO)
estimates that healthy diets are still unaffordable to over 3B
people across the world, and a majority of these people are
from low and middle income countries [1]. Efficient weed
management in agricultural fields is an important factor that
can improve crop productivity. Due to the spatial and temporal
heterogeneity of weeds/plants in agricultural fields, many
robotic weed control methods (aerial and ground) have been
developed for site-specific weed management [2].

The effective use of robotic technology can benefit farmers
by improving crop yield and reducing production costs, but
it faces many challenges in real-life rural environments. Two
challenges that affect the performance of such systems are:
network availability and reliability. While network availability
ensures that the infrastructure is available and operational at
all times, reliability ensures that the infrastructure has been
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successfully deployed, and is operating error-free [3]. It is
expected that a reliable network will maintain a high standard
of service, even in the event of system faults [4]. This allows
a system to operate without interruption when one or more
faults occur. Fault detection and automated correction play a
key role in supporting a system's fault tolerance.

Moreover, utilisation of edge computing resources can also
considerably benefit rural infrastructure, as it provides many
advantages like low latency, distributed architecture, security
and support for real-time execution. These benefits enable
the use of edge-cloud infrastructure in many real-world agri-
cultural settings that utilise Internet of Things (IoT) based
systems.
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Fig. 1: Architecture of the proposed framework

One such application, namely Rural-Al, allows the use of
machine learning (ML) within rural communities, with an aim
to achieve better performance in terms of productivity, eco-
nomic growth, impact of climate change and affordability [5].
Rural-Al [6] is the engineering of cyber-physical systems for
enabling sovereign, sustainable Al in locations with limited
and/or unreliable power/networking infrastructure. Due to the
lack of proper development and infrastructure in rural areas,



ML/AI applications cannot be utilised to their full potential.
Service outage along with unreliable network connectivity are
two key challenges that significantly affect the growth of rural
economy. These issues prevent IoT infrastructure from being
efficiently deployed and used [7]. Therefore, there is a need for
a framework that is capable of providing a reasonable quality
of service (QoS), even when a connection failure occurs.

A framework for edge-cloud infrastructure that detects
connection errors and adapts to such errors is proposed.
It also triggers a fault tolerance mechanism to ensure that
computational/Al tasks are executed with a minimal loss to
performance, even when a network fault occurs. The architec-
ture of our proposed framework is depicted in Figure 1. To
demonstrate the efficacy of this conceptual architecture, two
ML models based on ResNet-50 and MobileNetV2 have been
trained for identifying weeds, using images captured from a
robot mounted camera. Light version of these two models
have been generated respectively using model quantization
techniques — a process involving size reduction of the learned
model, at the expense of accuracy, e.g. by mapping model
parameters from floating-point numbers to low-precision fixed-
point numbers [8].

Our primary goal is to prioritise the use of highly accurate
pre-trained models for inference. As this inference is carried
out remotely on computational units of the farm site, it can
take longer time to execute. However, if we are unable to
connect with field side units due to network faults, local
models are utilised for inference. While this local model is
moderately accurate, its execution time is significantly lower
than the full model. An algorithm based on task deadlines
is utilised to determine the location for inference. The task
execution is then evaluated using a testbed created for this
framework. The main contributions of this work are as follows:

o formulation of a real-time image classification problem
with intermittent network connectivity. This problem is
then mapped to a weed detection use case — widely
considered significant in precision agriculture.

« performance analysis of two ML models trained for plant/
weed image classification. A rule-based algorithm is also
formulated for decision making, taking account of where
to perform this classification: locally or remotely.

o development of a testbed consisting of: Raspberry Pi
nodes (RPi), a laptop computer, and a cloud server — to
benchmark the performance of the proposed framework.

The remainder of this paper is organised as follows: Section
II outlines recent work in adaptive edge-cloud frameworks.
The components and associated pre-requisites for the frame-
work are described in Section III. Section IV describes fault-
tolerance mechanisms supported and the proposed decision
making algorithms. Section V and VI include simulation
experiments and results. Section VII provides concluding
remarks and future work for the designed framework.

II. ADAPTIVE EDGE-CLOUD FRAMEWORKS

Nvidia Jetson (Nano) and Raspberry Pi are now widely
used to support edge-based Al computing. Dependable use

of these devices require addressing operational issues such
as inconsistent internet, communication delays, and service
disruptions — that require proactive strategies [9], [6]. Fault-
tolerance is a crucial requirement of agricultural robots, espe-
cially as they need to be operated by non-experts. Researchers
have extensively focused on fault-tolerance across platform
and infrastructure layers, such as use of self-adaptive systems
which provide quick backups and reduced recovery times [10].
Other methods like greedy nominator heuristic ensure service
reliability through service replication [11], [12]. With the
rising demand of Al in rural environments, such applications
require support for fault-tolerance, to ensure performance and
efficiency in agricultural applications.

Recent literature highlights advancements in weed detection
and robotic weed management in agriculture, such as studying
weed classification using Al [13], or adapting to rural infras-
tructure to securely train an Al model [14]. However, literature
addressing infrastructure unreliability, especially in rural farm-
ing areas [6], [15] is limited. Even though there are researchers
working on optimising machine learning inference to reduce
costs [16], delays [17], [16], and balance workload [17], they
often lack solutions tailored for agricultural settings in rural
areas. This work focuses on edge-deployed applications for
agriculture, especially when using an unreliable (rural) data
network.

III. CONFIGURING THE INFRASTRUCTURE

This section includes a description of software systems used
within our proposed infrastructure. A case study which makes
use of this infrastructure is also described.

A. Serverless Computing Platforms

A number of serverless platforms are available — ranging
from those that are: (i) used commercially, such as ! Amazon
Lambda, Google functions, Azure functions, etc; (ii) avail-
able as open source systems, such as Apache OpenWhisk,
“Fissions, *OpenFaa$, etc. Some variants include pre-deployed
commercial versions of open source platforms, e.g. OpenFaaS
Pro, which offers additional features and support.

These platforms differ in the types and range of capabilities
they offer, for instance, some utilise an existing pre-deployed
platform (e.g. Kubernetes) enabling users to write and offload
executable functions. These types of platforms enable users
to build and manage their own functions, rather than the
infrastructure on which these functions are hosted. Others
include support for deploying (and managing) the hosting
environment on which these functions are executed (e.g.
OpenWhisk). Parsl [18] provides a Python-based development
environment for functions, and can be hosted on both edge
devices (e.g. RPi) and on a high performance computing
cluster. This is achieved through the use of custom executors
designed for the resource being used in the architecture. Pars/
also provides the basis for dynamically distributing functions

Vhttps://aws.amazon.com/lambda/
2https:/ffission.io/
3 https:/fwww.openfaas.com/



to new devices, using a controller node. A key benefit of
Parsl is the ability to develop a heterogeneous function hosting
environment, which can be modified at run time, especially
when node failures occur. A reference to functions deployed
across Parsl nodes are hosted in a registry, enabling these
references to be updated as new instances of functions are
deployed. Lean OpenWhisk represents a streamlined adap-
tation of the conventional OpenWhisk platform, optimised
specifically for serverless frameworks within edge computing
environments. Distinctively, Lean OpenWhisk demands fewer
resources compared to its original counterpart, incorporating
only the fundamental modules essential for executing server-
less operations. Instead of Kafka, Lean OpenWhisk utilises
an in-memory queue structure, substantially diminishing its
overall framework footprint. Moreover, it adopts a more inte-
grated design by placing the Invoker in close proximity to the
Controller module. This strategic design adaptation enhances
its efficacy on devices with limited resources, such as RPi or
Nvidia Jetson, which are frequently deployed in edge or IoT
settings. A significant limitation of Lean OpenWhisk is its
exclusive compatibility with the x64 and x86 infrastructures,
omitting native support for the ARM architecture predominant
in RPis. To bridge this gap, we've devised a Docker-based
solution, adapting Lean OpenWhisk for deployment on RPi
devices built on the ARM framework.

B. Dataset and ML Models

DeepWeeds [19] is a multiclass image dataset for deep
learning consisting of 17,509 images. These images belong
to 8 different categories of weeds found in vast regions of
northern Australia. This dataset contains 15K training images
and 2.5K test images of size 256x256 pixels. Two different
ML models: ResNet-50 [20], and MobileNetV2 [19] have been
trained on the DeepWeeds image classification dataset and
utilised for plant/weed identification in this work.

model training and
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Fig. 2: Interaction between robot, FSU, and cloud node in the
agricultural field

C. System Design and Use Case

We develop a three-tier architecture comprising of IoT
devices, storage, and computation resources positioned in a
hierarchical manner. The control flow of the framework is
based on a master-worker configuration. We consider a rural
agriculture use case where robots identify and remove weeds.

Robots interact with Field Side Units (FSUs) that are located
in proximity to a robot on the same field.

Robots act as the master node, whereas the FSU are the
worker nodes. An interaction between robot, FSU, and cloud
server is depicted in Figure 2. Robots move throughout the
field by following a 2-D random walk trajectory. Each robot
is equipped with a camera to take images of nearby plants. To
evaluate whether the image captured is of a weed or a plant,
there are two options: the robot can either perform inference
locally, or forward the data to the on-farm FSU for remote
inference. This decision is taken by a robot in real-time on
the basis of the network quality between robot and FSU and
the computational capacity available on the robot. If the plant
is identified as a weed, the robot will initiate the weed removal
process, otherwise the robot will move to a different location
and repeats the process again.

IV. PROPOSED APPROACH

We propose a fault diagnostic mechanism that takes the
network quality into consideration whenever a task is executed
by a robot. A brief summary of the ML models, execution
workflow, and decision algorithm for the proposed framework
is provided in this section.

A. ML Models

Two ML models are considered: ResNet-50 and Mo-
bileNetV2. ResNet-50 is considered a good model for image
classification because of its layer depth, residual connection,
ease for transfer learning, and good performance. Due to
the large number of hyperparameters, full models based on
ResNet-50 are capable of handling complex image classifica-
tion tasks. However, this comes at the cost of high execution
time and computational requirements. Both computational
capacity and storage are assumed to be limited in edge environ-
ments. TensorFlow Lite is used to perform model quantization
and generate a light version of ResNet-50, trained on all eight
classes of weeds available in the DeepWeeds dataset.

The whole DeepWeeds dataset is gathered from a vast
region in northern Australia, although it is highly unlikely to
find all eight weed classes within a single geographic region.
Another model is based on MobileNetV2 on three classes of
weeds available in the DeepWeeds dataset: Chinese Apple,
Lantana, and Snake weed. We have assumed that only these 3
classes of weeds are found in the specific geographical region.
In general, each geographical region will have a different
model trained on specific categories of weeds that occur in
that region. A light version of MobileNetV2 model is used for
local inference on the robot.

B. Signal Monitoring

A signal monitor continuously examines the network con-
nectivity between the robot and the FSU. We have divided the
‘signal’ parameter into three different categories: no signal,
low signal, and strong signal. When the robot is unable to
establish connection with an FSU, it is considered to have no
signal, no distortion between the robot and FSU indicates a



strong signal, and low signal falls between these conditions.
During our experiments, when the signal strength drops below
a threshold value, it is considered as a low signal; otherwise
the signal is considered to be a strong signal.

C. Execution Workflow for Inference Tasks

The light model based on MobileNetV2 is used for local
inference on the robot, whereas the light model based on
ResNet-50 has been used for remote inference on a FSU.
MobileNetV2 offers an accuracy of 62.65%, whereas ResNet-
50 offers an accuracy of 88.64%.

Our deadline-aware approach starts by initially checking
the network connection. Depending on the current network
signal quality, a deadline is established for each task and the
inference process is initiated if the connection is available.
The estimated deadline is the approximate time it takes to
perform ML inference on a FSU, if the current signal quality
is maintained throughout the execution of task. It is calculated
by considering the execution time on a FSU, transmission
time and link time for completing the inference. The algorithm
offloads ML tasks to remote FSUs and starts a timer. If the
outcome of inference task is not retrieved before the deadline,
the task is immediately discarded. Inference is then performed
using a local model. We have assumed that if the results are
not retrieved within the deadline, a network fault might have
occurred, thereby causing the delay. Executing a model locally
ensures that a reasonably accurate result is achieved, even
when the inference fails on the FSU. The proposed deadline-
aware approach is described in Algorithm 1.

Algorithm 1 Deadline-Aware Approach

1: procedure DEADLINE-AWARE()

2 (FSU: Field Side Unit)

3 begin connection setup [robot <> FSU]

4 if connection setup — success then

5: inference task — calculate deadline

6 inference (FSU) — start

7 timer — start

8 if result [robot «+— FSU] & timer # finished then
9: prediction (FSU) < success

10: else if timer = finished then

11: prediction (FSU) — discard
12: inference (local) — start

13: prediction (local) <— success
14: end if

15: else connection setup — failure

16: inference (local) — start

17: prediction (local) < success

18: end if

19: end procedure

Another signal quality-aware approach for the proposed
fault tolerance mechanism can be considered. The signal
quality of the network is repeatedly monitored and a threshold
value is fixed before we begin execution. If signal quality is
found below the specified threshold value, it is considered to

Fig. 3: Weed image: (a) original (b) blurred (c) black patched

have low quality for performing the FSU-based execution and
inference is directly performed on a local node. This is because
low signal increases the probability of task failure in case
any network fault occurs. By adjusting the threshold value,
the sensitivity of model performance can be controlled in the
framework. In a real-life scenario, the threshold can be spec-
ified based on the network requirements of that application.

V. EXPERIMENTS AND SIMULATION

We evaluate the performance of our weed detection model.
Multiple faults introduced in the model are captured in the
simulation setup and tested over multiple iterations.

A. Experimental Setup

The experiments have been evaluated on an edge-cloud
environment that consists of one cloud node and multiple
edge nodes connected over the internet. A Google Cloud
Platform (GCP) server is utilised to host the cloud node.
This is an NVIDIA Tesla T4 GPU Computing Accelerator,
16GB GDDR6, 585MHz 2560 CUDA cores with PCIe 3.0
x 16. The edge nodes are Raspberry Pi (RPi) 4 Model B,
Quad core Cortex-A72 (ARM v8) 64-bit SoC, 1.5GHz, 4GB
LPDDR4 RAM, 64GB storage. Both edge and cloud nodes are
connected to a FSU — a Dell Latitude 5420 laptop, Core i7-
1185G7, 3.00GHz, 8-16GB RAM and 512GB storage running
a 64-bit Ubuntu 22.04.1 LTS. We also make use of an open
source serverless platform, utilising Lean OpenWhisk Invokers
running with maximum 3GB memory.

B. Testing ML Model Capabilities

In a real-world application, it is not possible for the robot to
capture perfect images of plants and weeds all the time. Some-
times, due to extraneous factors such as weather condition and
crop density, the images captured are either unclear or have
obstructed line of sight. This results in unfavourable conditions
for model evaluation and can affect system performance and
efficiency. To test the ML model capabilities for environmental
variations, we have intentionally injected noise in the images
and then performed evaluation of the generated models. The
noise has been injected in images in mainly two forms: blur
and black patch. Blur function is applied on the entire image,
whereas two random size black patches are applied at a
random location in the image. The blurred image can simulate
a situation when there is dust, rain drops on the camera lens
that make the entire image unclear. In a similar manner, the
black patched image can replicate a scenario when a leaf/insect
is covering part of the lens or there is a stem obstructing the



line of sight to the actual object. A sample weed image with
blur and black patch is described in Figure 3. It is important
to note that we have not performed any training using noisy
images. However, blur and black patch noise was injected in
all the test images of DeepWeeds dataset, and then ResNet-
50 and MobileNetV2 were used for evaluation. The accuracy
observed with and without noisy images for ResNet-50 and
MobileNetV2 models are shown in Table I.

TABLE I: Model accuracy with and without noisy images

w/o noise with blur with black patch
ResNet-50 88.64 % 52.05 % 57.77 %
MobileNetV2  62.65 % 39.36 % 4291 %

For a real-life application where environmental variations
cause unfavourable conditions for ML model inference, it can
be noticed that ResNet-50 is a better option for performing
task evaluation than MobileNetV2.

C. Node Selection for Training and Inference

We measured training time for one epoch of weed identi-
fication model using one image of DeepWeeds image classi-
fication dataset and analysed the performance on edge, FSU,
and cloud nodes. The benchmarked results for model training
are described below in Table II.

TABLE II: Time for training 1 epoch on 1 image

ResNet-50 MobileNetV2
Cloud 10.71 sec 04.15 sec
FSU 43.36 sec 16.19 sec
Edge 142.23 sec 38.64 sec

It can be observed that the training time on edge node, FSU
is 4x and 10x more respectively, than the cloud node, for both
the models. Therefore, we have selected the cloud node for
training our two ML models and generate light versions of
these models. It takes around 64sec, 42sec to generate light
models of ResNet-50 and MobileNetV2 respectively.

A stress test to analyse the performance capabilities of two
models on an edge node and FSU is also presented in this
work. We ran concurrent inferences of weed identification
tasks and observed the change in their waiting and execution
times. Tables III and IV describe the average waiting and
execution time for one inference when n concurrent inferences
are performed.

TABLE III: Concurrent ML inferences on edge node

No. ResNet-50 MobileNetV2

of Waiting Execution Waiting Execution
tasks time time time time

2 18.76 sec 05.36 sec 11.30 sec 0.52 sec
4 21.25 sec 15.90 sec 23.33 sec 1.00 sec
6 33.66 sec 31.94 sec 38.97 sec 1.37 sec
8 53.80 sec 35.62 sec 50.97 sec 1.80 sec
10 ') 0o 79.05 sec 2.08 sec
14 o) 00 124.59 sec 5.43 sec

The symbol oo is used to describe the event when inference
is unable to complete due to system crash, or other execution

failure (as it did not terminate). We were able to achieve
8, 14 concurrent executions for ResNet-50 and MobileNetV2
models respectively on the edge node, whereas on the FSU, the
number of successful concurrent executions observed were 34
and 40 respectively. We also noticed that waiting and execution
time on the edge node (robot) is much higher than FSU for
both models. In terms of a real-life application, where we
might have to perform multiple executions at the same time,
MobileNetV2 is a better option for task execution.

If we consider the following four factors for decision mak-
ing: (1) model adaptation to a harsh environment, (2) number
of concurrent executions possible, (3) average execution time,
and (4) average waiting time, we need to establish a trade-off
between choosing a more accurate model or reduce time to
develop a model. Therefore, in this work, we have decided to
deploy the highly accurate ResNet-50 model on the FSU (as
a primary option), but if the network connection is unreliable/
unavailable, we can resort to utilising the MobileNetV2 model
for local inference, which offers faster processing than the
former (with reasonable accuracy).

TABLE 1IV: Concurrent ML inferences on FSU

No. ResNet-50 MobileNetV2

of Waiting Execution Waiting Execution
tasks time time time time

2 1.65 sec 0.20 sec 1.24 sec 0.02 sec
6 1.98 sec 0.22 sec 2.14 sec 0.02 sec
12 3.91 sec 0.47 sec 3.39 sec 0.06 sec
18 5.92 sec 1.24 sec 6.02 sec 0.06 sec
26 9.38 sec 1.48 sec 9.39 sec 0.08 sec
34 12.53 sec 2.86 sec 12.99 sec 0.12 sec
40 o] 0 13.85 sec 0.13 sec

D. Execution Workflow

This section describes the runtime workflow of the imple-
mented fault-tolerant framework. Initially, the model training
is performed on the Google GCP server and the data is then
offloaded from server to RPi and FSU before beginning the
execution. In this framework, it is assumed that the ML models
used for inference have already been loaded on to the robot,
FSU, and incur no extra latency in the execution process. The
interaction between laptop and RPi is managed using Pars!
executors. We have used the HighThroughputExecutor and
constructed an Ad-Hoc cluster configuration for communica-
tion between them. The network connection between RPi and
laptop is simulated. Network faults are induced by varying the
signal quality of the network connection. Multiple iterations of
inference and fault models have been tested and results have
been formalised by averaging their values.

E. Communication and Monitoring Setup

It is difficult to estimate an exact signal strength throughout
the communication channels. Therefore, we have estimated
the signal strength on controller node and used it as a ref-
erence point throughout the inference. In simulation, patterns
are generated through a random process for determining the
signal quality of each task. For an ideal circumstance, the



TABLE V: Simulation Parameters

Variable Values/Range
threshold (5% - 95%)
link quality (0% - 100%)
ResNet-50 accuracy 88.64%
MobileNetV2 accuracy  62.65%

(10.18KB - 35.11KB)
(4.44ms - 59.31ms)
(1.2sec - 4.59sec)
(0.11sec - 0.35sec)
1Mbps

image size
preprocessing time
ResNet-50 time
MobileNetV2 time
link transfer rate

time it takes to send data over the network is given as
(link time = data size/link speed). The link transfer speed
considered in this work is 1Mbps. Link delay is determined
as (link delay = link time/quality). When the quality is
set to 1.0, the wireless link is utilised at full capacity and the
execution is performed at the fastest possible speed. When
quality drops below 1.0, the link delay increases and the task
takes more time to execute. This technique has been utilised
to estimate variable network latency in the wireless network.
A list of all the variables considered in this simulation are also
described in Table V.

VI. RESULTS AND EVALUATION

This section describes the experimental results and evalua-
tion for our weed inference framework. We simulate unreliable
connection by adjusting the signal threshold and testing it
with the proposed algorithm. The performance of the system
is evaluated on the basis of two key parameters: time and
accuracy.

A. Results

Fig. 4a and 4b display the average time taken to perform
image inference on full and light models, respectively. We
have only utilised light models in this work, but in order to
justify not using full models, we have performed inference on
full models as well. The results show that inference time on
full models are almost 10x in comparison to the light models.
Therefore, light models are a better choice over full models for
weed/plant inference. TensorFlow Lite models have a smaller
file size compared to TensorFlow, and the light model can be
directly accessed without the need for additional parsing or
unpacking steps, which in turn speeds up the inference process.
As a result, this allows a time efficient and effective execution
of ML inference tasks on resource constrained devices, having
low memory and less computational power in comparison to
cloud nodes. We note that execution time for MobileNetV2
based model is less than ResNet-50 model — as ResNet-50 has
177 layers and about 25.5M parameters, while MobileNetV2
has 156 layers and only 3.5M parameters.

A comparison of inference time on two different platforms,
namely Parsl and Lean OpenWhisk, is shown in Fig. 4c. We
wanted to test our model execution on another comparable
serverless platform. Lean OpenWhisk is a lightweight version
of the open-source OpenWhisk serverless computing platform
that can be deployed on the edge layer, and offers all the

basic functionalities of the full version of OpenWhisk. We
selected locally executed MobileNetV2 model as a task for
this evaluation. The results show that execution time on
Farsl is significantly less in comparison to OpenWhisk. This
is because Docker instances are created and initialised for
performing execution on OpenWhisk platform. However, Pars!
functions can be directly run on the node using pre-developed
executors. We realised that using these custom executors and
dynamic function distribution makes Pars! a good platform for
performing real-time function execution.

Fig. 5a illustrates the completion time of deadline-aware
and quality-aware methods put forward in the proposed weed
inference model. As the threshold for signal quality increases,
the completion time shortens, as more inference tasks will
utilise the local model for predictions instead of the full
model. The completion time for the deadline-aware approach
is significantly higher in comparison to signal quality-aware
approach. Using the deadline-aware approach, the system has
to wait for the deadline to expire before executing the local
model for prediction, whereas with the signal based approach
it immediately runs the local predictions if the signal quality
is below the specified threshold. Moreover, the completion
time for the random allocation approach is high in this
experimentation. This is because the algorithm selected full
models for most of the evaluations, resulting in high execution
time. It can also be verified by high accuracy of random
allocation approach observed in Fig. Sc (because full models
are more accurate). For round-robin approach, the completion
time increased from 0.78sec to 1.28sec with an increase in
signal quality. At low threshold values, most of the jobs are
unable to complete execution because of poor signal quality.
However, as the signal quality increases, both completion
time and accuracy increases — as the approach selects full
models for execution alternatively and successfully completes
the execution.

The Fig. labeled 5b illustrates the impact of increasing ac-
curacy on task completion time. It is observed that completion
time increases as high accuracy is achieved by the evaluation
model. To improve accuracy, we need to perform the inference
by utilising the full model (which takes more time to execute).
Even at low accuracy, the computation time for the deadline-
aware approach is much higher than that offered by the quality-
aware approach. This is because the deadline-aware approach
uses a local model for inference after the deadline has expired,
which adds extra latency to the overall execution time of
proposed framework.

It can be seen in Fig. 5c that for low signal quality
threshold, the accuracy of inference is high. This is because
for most of the inferences, current signal quality will be
above the threshold and it will be using the full model for
inference. However, as the threshold value increases, higher
number of jobs will be running the local model which is less
accurate. Hence, the accuracy decreases with increase in signal
threshold. Along with that, it can also be observed that both the
approaches are giving almost same accuracies with changing
threshold values. This is because in both the approaches,
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Fig. 4: Average plant/weed inference time for different ML models
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Fig. 5: Performance evaluation of the proposed algorithms

threshold is a measure that mainly affects the decision on
where the execution will happen. For signal quality-aware
approach, the threshold decides whether to execute the job
locally or remotely, whereas in deadline-aware approach, the
threshold is used for estimating the time it will take to execute
the job remotely. The estimated time is then compared with job
deadline to evaluate whether the remote execution is success
or not. Therefore, the same model (either local or remote) is
picked for evaluation in both the approaches. The accuracy
for random allocation is high but the completion time for
this approach is also higher because of randomly picking
full models for execution. For the round-robin approach, the
full models are selected and successfully executed with an
increase in signal threshold. This is because high threshold
value ensures a higher chance of successful task execution
(with the current signal quality).

B. Analysis

Based on the experimental results, we can make the fol-
lowing observations: (i) The execution time for full models is
almost 10 times that of the light models. (ii) ResNet-50 based
models are more accurate in comparison to MobileNetV2 mod-
els, but take longer to execute. (iii) The signal quality-aware
approach generates better results in terms of completion time,
whereas the deadline-aware approach yields more accurate
results (if completed within the deadline). (iv) Changing the
threshold value significantly affects the completion time of the
signal quality-aware approach, whereas the completion time of
the deadline-aware approach is less affected by the threshold

value. (v) Inference accuracy of the framework decreases with
an increase in signal quality threshold. (vi) A trade-off between
accuracy and execution time can be achieved based on user
application requirements.

VII. CONCLUSION AND FUTURE WORK

An edge-cloud framework that can be used within mobile
agricultural robots under intermittent network connectivity is
proposed. This approach is aimed at addressing network faults,
such as unreliable connections and service outages, that can
significantly affect the performance of precision agriculture
applications. Using on-board machine learning (ML) models
for classification and inference, the robot analyses plants/
weeds by taking images through a robot-mounted camera.
For demonstration, two ML models were trained for weed
identification and prediction using the DeepWeeds image
classification dataset with noise.

We evaluate our algorithm using experiments performed
on a testbed, demonstrating that our approach provides ac-
curate predictions under variable network signal quality. The
proposed approach offers better performance in terms of
completion time, whereas a more traditional deadline-aware
approach (used as a comparison) is more accurate but takes
longer to execute. Moreover, our approach can be extended
and adapted to other image classification or object detection
datasets in precision agriculture. By training ML models on
specific datasets, similar frameworks can be developed for
identifying other types of plants, diseases or pests.



To enhance classification results, we will extend our ap-
proach with optimisation techniques like genetic algorithms or
particle swarm optimisation. However, real-time edge analysis
may require specific variants of these methods due to their high
computational demands. We also aim to design a real-time
dynamic approach that automatically selects the most suit-
able algorithm for inference (from multiple locally available
options) based on past system performance and user-defined
threshold values.
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