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Orchestration and Management of Adaptive
IoT-centric Distributed Applications

Sehrish Amjad, Ahmed Akhtar, Muhammad Ali, Ayesha Afzal, Basit Shafiq, Jaideep Vaidya,
Shafay Shamail and Omer Rana

Abstract—Current Internet of Things (IoT) devices provide a diverse range of functionalities, ranging from measurement and
dissemination of sensory data observation, to computation services for real-time data stream processing. In extreme situations such as
emergencies, a significant benefit of IoT devices is that they can help gain a more complete situational understanding of the
environment. However, this requires the ability to utilize IoT resources while taking into account location, battery life, and other
constraints of the underlying edge and IoT devices. A dynamic approach is proposed for orchestration and management of distributed
workflow applications using services available in cloud data centers, deployed on servers, or IoT devices at the network edge. Our
proposed approach is specifically designed for knowledge-driven business process workflows that are adaptive, interactive, evolvable
and emergent. A comprehensive empirical evaluation shows that the proposed approach is effective and resilient to situational
changes.

Index Terms—IoT-centric workflows, Edge Computing, Knowledge-driven business processes, Service orchestration.

✦

1 INTRODUCTION

The emerging cloud and edge computing infrastruc-
ture provides new opportunities to develop next-generation
Internet-centered distributed applications that are adaptive,
evolvable and emergent [1], [2]. Such applications may
include knowledge-driven distributed workflows that are
dynamically orchestrated and managed by utilizing compu-
tation, data and storage resources available in a cloud data
center, enterprise networks as well as Internet of Things
(IoT) devices. IoT devices in such workflows provide a
diverse range of functionalities, from measurement and
dissemination of sensory data observation to computation
services for real-time data stream processing. In workflows
that are designed for extreme situations such as emergen-
cies, a significant benefit of IoT devices is that they can help
gain a more complete situational understanding of the en-
vironment. However, this requires the ability to effectively
utilize resource constrained IoT devices.

The IoT applications that we consider in this paper are
knowledge-driven workflows. A unique aspect that differ-
entiates them from traditional workflows (business pro-
cesses, scientific workflows, etc.) are that they are emergent
and their execution evolves based on the knowledge of
the execution status, environmental context, situation and
case-specific parameters that are not known apriori and are
subject to change at runtime. Moreover, in such workflows,
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Fig. 1. Environment for Orchestration and Management of IoT-centric
Distributed Workflow Applications

the binding of tasks to service / resource endpoints may not
be known at design time [3]. The orchestration and manage-
ment of such workflows therefore requires dynamic discov-
ery, selection and binding of workflow tasks to available
cloud or edge resources as well as establishing coordination
between these resources based on the functional and non-
functional requirements of the workflow.

We address this challenge and present an integrated
framework for dynamic orchestration and management of
IoT-centric and knowledge-driven workflow applications.
In the cloud and edge computing environment we consider,
users submit their workflow orchestration and management
requests to a workflow coordinator by providing high-level
workflow specifications. The different tasks in the workflow
may run on computation/ data resources on the cloud, edge
nodes and on IoT devices. These edge nodes and IoT devices
may be geographically distributed. For binding the work-
flow tasks to the corresponding edge resource or IoT device,
we consider a peer-to-peer overlay network of intercon-
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nected nodes consisting of geographically distributed edge
devices. Peer nodes in this overlay network are partitioned
into cells based on their locations. Each cell has one or more
peer nodes which maintain information about other edge
or IoT devices in the cell and their capabilities (in a local
database). For workflow orchestration, the coordinator dy-
namically binds the workflow tasks to the services available
in the cloud or edge/ IoT devices discovered through peer
nodes based on the location and context requirements of
tasks. The peer nodes may also act as local orchestrators. The
binding may need to change in real time as the dynamics
of the underlying environment change. To illustrate the
requirements for dynamic orchestration and management of
IoT-centric and knowledge-driven workflows an illustrative
example is provided in section 1.1.

1.1 Illustrative Application Scenario

Consider a real-time incident management workflow appli-
cation of a Supply Chain Monitoring Company that collects,
integrates and analyzes real-time data from different data
sources (e.g., emergency reporting systems and social me-
dia) and IoT devices (e.g., sensors – environmental, traffic,
chemical, fire detection, surveillance cameras, etc.) This inci-
dent management workflow is depicted in Fig. 2. This work-
flow is instantiated dynamically in response to a highway
accident in which a tractor-trailer carrying several drums of
liquid acetone has overturned and exploded, generating a
smoke plume that spreads over a large area. This workflow
provides users with a real-time picture of their in-transit
cargo and notifies them of risks and disruptions due to
ongoing/ developing disasters/ accidents along the routes.
It also reroutes cargo trucks to avoid delays, as well as risks
due to ongoing/developing disasters.

For identifying the at-risk areas, the workflow deploys
and runs a plume modeling service (e.g., ALOHA [4]) on an
edge device. For dynamic generation of the plume model,
this service requires a continuous stream of sensory data
observations (including wind speed, wind direction, tem-
perature, humidity and aerosol concentration) from mul-
tiple locations in the vicinity of the incident site. For ex-
ample, the service may require receiving observations from
a grid of location points that are separated by a distance
of 50 meters from each other and are spread within a 500
meter radius from the incident site. The data observations
can be obtained from different sensors installed on cars
and buses that are near the incident site as well as from
fixed environmental sensors installed along the highway.
The sensor data originating from such diverse sources also
requires pre-processing and integration in order to address
the data granularity and format issues before it is fed
to the plume modeling service. Such pre-processing and
integration needs to be carried out on-the-fly on a nearby
IoT/ edge device with computation and storage capability,
for example on a smartphone of a user or on an onboard
computer system of a vehicle. Similarly, other tasks (e.g.,
traffic congestion monitoring, rerouting cargo trucks, etc.)
of this workflow also require collection, integration and pre-
processing of data from different sensor data streams. Note
that the location of these sensors/ IoT devices may not be
known apriori and are determined after completion of prior

Fig. 2. IoT-centric Distributed Workflow for Incident Management

tasks of the workflow. For example, for traffic congestion
monitoring and cargo truck rerouting, live traffic camera
feeds are retrieved from different roads/ intersection points
after identifying at-risk areas. Similarly, plume modeling
related tasks cannot be bound to resources at design time
due to their dependency on the incident location and un-
predictable connectivity/ accessibility of the source services
and devices in the vicinity of the incident.

The proposed framework enables orchestration and
management of the above incident management workflow
as well as other IoT-centric knowledge-driven workflows
through location-aware and flexible service/ resource selec-
tion, iterative & incremental binding, and dynamic service
deployment by taking into account resource availability
status, spatio-temporal constraints, and resource constraints
of the underlying service infrastructure as well as real-time
processing constraints of the application.

The main contributions of this paper are to:
‚ Develop an integrated framework for orchestration

and management of IoT-centric and knowledge-driven
workflow applications that are dynamically composed
and adapted.

‚ Provide a centralized as well as a distributed approach
for orchestration and hierarchical resource management
of IoT-centric distributed workflow applications.

‚ Perform an empirical evaluation of both centralized and
distributed approaches by emulating two real-world
streaming workflow examples. We also compare the
performance of our approaches with an existing Edge
Cluster Stream Processing (ECSP) approach.

The rest of the paper is organized as follows. Section 2
presents the background/ context and problem statement.
Section 3 discusses the proposed approach and Section 4
provides implementation details. Section 5 presents experi-
mental evaluation results. Section 6 discusses related work.
Finally, Section 7 concludes the paper and discusses future
work.

2 PRELIMINARIES AND PROBLEM STATEMENT

We now introduce the notations and formally define the key
concepts discussed in the paper and then provide a formal
statement of the problem under consideration.
Definition 1. (Resource): A resource r P R is denoted by a
tuple r “ xi, ρ, π,H,Σ, qy, where i is the resource identifier,
ρ denotes its type e.g., sensor, actuator, fog/edge device, or
a cloud service, π denotes its location (URI), H and Σ denote
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the software and hardware specification respectively, and q
denotes quality-of-service (QoS) properties of r.
We represent the QoS properties of a resource as a list of
attribute-value pairs txqα, vαyu.

Definition 2. (Workflow): An application workflow W is a
two-parametric model (Γ, Λ) where:
‚ Γ is a set of tasks, each denoted by a tuple γ “

xi, l, d,H,Σ, I, O, δ, ρ, ry where, i is the task identifier, l is
the task’s location requirement, d is the task duration, H
and Σ are its software and hardware requirements respec-
tively, I and O denote the input and output parameters for
the task respectively, δ indicates whether γ is a deployable
or non-deployable task, ρ denotes the type of resource
the task requires for execution (e.g., sensor, actuator, edge
device, cloud service), and r is the mapped resource.

‚ Λ Ď txpγ, γ́q, q, myu denotes the interaction between a
pair of tasks pγ, γ́q P Γ ˆ Γ, q indicates QoS parameters
defined in the interaction e.g., latency, bandwidth, sam-
pling rate (samples per second - the rate at which data is
read and displayed), and m is the message type (request/
response).

We assume that the workflow is specified at the finest
granularity level with each task binded to only one resource.

Example 1. The wind measurement and plume computation
tasks of the incident management workflow are modeled
as follows:

‚ γ1 “ x wind measurement, within 200 meter radius of
incident location, 5 min, {xMeasuring range: 0.3 to 75
m/sy, xAccuracy:+ 0.2 m/s or bettery, . . . }, {data processing
software}, {lat-long, radius, measurement unit, precision,
. . . }, {wind speed data}, “non-deployable”, “Wind Speed
and Direction Sensor”, windSensor1 y

‚ γ2 “ x plume computation, within 200 meter radius of
incident location, 8 min, {0.5 GB, . . . }, {Linux, Python,
. . . }, {wind speed, wind direction, temperature, humidity,
aerosol concentration, . . . }, composed data, “deployable”,
“Edge device”, edgeNode1y

Interaction between pγ1, γ2q is modeled as λ P Λ as:
‚ λ “ xpγ1, γ2), {xresponse time: 100msy,xbandwidth: 1

Mbpsy,xsampling rate: 10 samples per secy,. . . }, (http://sch
emas.opengis.net/sos/2.0/sosGetObservation.xsd#request, ht
tp://schemas.opengis.net/sos/2.0/sosGetObservation.xsd#res
ponse) y

Note that resource binding for the tasks (parameter r)
cannot be specified at design time as it can only be deter-
mined at runtime after resource discovery and selection.
Similarly, the values of πγ1 are πγ2 in their λ are also
determined at runtime after task-to-resource binding.

Definition 3. (Binding): Let W “ pΓ, Λ) be a workflow and
R be a set of available resources, a task-to-resource binding
b : Γ Ñ R is mapping from a resource request in Γ onto a
specific resource P R.

The binding of the task γ1 in Example 1 to an actual
wind sensor is expressed as, bpγ1q “ windSensor1, where
windSensor1=xS123, “Wind Speed and Direction Sensor”,
xlatLong:(29.331, 70.827)y,. . . , {xtime constant: 62.3y, xbaud
rate: 2400 to 38400y,. . . }y.

2.1 Problem Statement
Given,

‚ a distributed application workflow W “ pΓ, Λ),
‚ knowledge of the operational environment,
‚ services available in the cloud, and
‚ the database maintaining the information of different

edge nodes, IoT devices and services which can be
deployed

Develop an orchestration and management plan that:
‚ determines binding of the workflow tasks to available

services based on workflow specification and available
knowledge of the environment, and

‚ dynamically adapts (context-aware) execution of the
workflow by taking into account the changes in the
environmental context (e.g., unavailability of resources
requiring re-binding of workflow tasks) and execution
results of tasks.

In knowledge-driven distributed workflow applications,
subsequent tasks are dependent upon the knowledge gained
from the execution of previous tasks and binding of all
the tasks cannot be performed once at design time. For
example, in our incident management scenario, the binding
of tasks related to plume modeling and finding congestion-
free routes cannot be performed simultaneously at design
time. Since the execution of the plume modeling-related task
identifies the at-risk areas, and this knowledge is used in
finding congestion-free routes. Therefore binding needs to
be done in an iterative and incremental manner.

3 PROPOSED APPROACH

In this paper, we propose two approaches for orchestration
and management of distributed application workflows in
the cloud and edge computing environment. The first ap-
proach involves centralized orchestration and management
of workflows. In the second approach, the orchestration
and management activities are delegated to selected peers
in the overlay network. Each selected peer of overlay net-
work acts as a Local Orchestration Manager and performs
service/resource discovery, selection, and deployment for
the assigned task(s) in the distributed application workflow.
Below we discuss these approaches in detail.

3.1 Global Orchestration and Management (GOM)
In this approach, orchestration and management of dis-
tributed workflow applications (which includes binding,
coordination, management, and adaptation) are performed
in a centralized manner by the workflow coordinator. The
workflow coordinator determines at runtime, when and
where to perform the different workflow tasks by taking
into account the task specifications, location requirements,
current execution status of tasks, and resource availability.

As illustrated in the incident management workflow
example (Section 1.1), workflow tasks are dependent on
each other for their inputs and binding to underlying re-
sources. For example, traffic monitoring and re-routing task
can only be initiated after the at-risk areas are identified
by the plume modeling task. In such cases, the workflow
coordinator must also determine when to execute tasks in
addition to binding the tasks to appropriate resources (i.e.,
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Fig. 3. Role of Workflow Coordinator in the GOM Approach

devices/services) for their execution. This is specifically true
for computation services which need to be deployed on
edge/ IoT resources.

Fig. 3 shows the architectural overview of the GOM ap-
proach. The workflow coordinator maintains a database to
store the workflow execution status and current status infor-
mation of various resources available within each cell of the
peer node. For orchestration and management, workflow
coordinator is responsible for resource discovery, task-to-
resource binding, interaction between resources across cells
for workflow coordination and management, and workflow
adaptation in case of resource failure/un-availability.

Our proposed approach performs resource discovery
and task binding iteratively at runtime. In each iteration, the
workflow coordinator dynamically discovers resources for
all those tasks whose inputs and deployment information
are available and performs task binding. For example in
the incident management workflow example, initially, input
and deployment information is available for plume model-
ing related tasks only – location is provided by user at the
start of the process. For plume modeling related tasks, the
workflow coordinator first discovers the resources, includ-
ing nearby sensors providing weather-related information,
storage buffer for temporary storage and integration of
sensor data, and computation resources for deployment of
plume modeling service. Next, the workflow coordinator
performs task-to-resource binding based on some optimality
criteria. In case, resources binded to the plume modeling
related tasks span multiple cells, the data exchange be-
tween these resources across cells is achieved through the
workflow coordinator. Moreover, the binded resource may
become unavailable (e.g., mobile device moved out of range
or failed) during task execution. In such a situation, the
workflow coordinator performs dynamic adaptation involv-
ing re-binding of task to a new resource.

Algorithm 1 presents the pseudo-code of the proposed
GOM approach. Given, a user’s workflow orchestration and
management request expressed as W “ pΓ,Λq, Algorithm
1 works in an iterative and incremental manner to support
dynamic discovery and binding of resources, coordination
& management, and workflow adaptation as discussed in
the following subsections.

3.1.1 Resource discovery and binding
Resource discovery involves discovering the devices and re-
sources that can provide the functionality and data required
by the unbinded tasks in the workflow for which the input

ALGORITHM 1: Global Orchestration and Management
(to be executed by the central workflow coordinator)

Input: Workflow : W “ pΓ, Λ)
1: while (true) do
2: R Ð Get resource status from each peer node
3: for each γ P Γ that are currently in execution do
4: κ Ð ReceiveExecutionOutputpγq

5: for each γ P Γ that needs to be invoked and requires
user input do

6: µ Ð ReceiveUserInputpγq

{Perform resource binding for all tasks that needs to be
invoked or for which the binded resource becomes
unavailable}

7: Workflow : pΓ́,Λq Ð Bind Resources(W,µ, κ,R)
8: for each interaction xpγ, γ́q, q,my P Λ do
9: if (peer(γ) ‰ peer(γ́)) then

10: ReceiveAndForward(γ, peer(γ), γ́, peer(γ́), m)

ALGORITHM 2: Bind Resources
Input: Workflow : W “ pΓ, Λ)
Input: User input: µ
Input: Execution status : κ
Input: Resource status: R
Output: Updated Workflow pΓ́,Λq

{Perform resource binding for all tasks that need to be
invoked or for which the binded resource becomes
unavailable}

1: Γ́ Ð SelectResources(Γ,Λ,R, µ, κ)
{perform service deployment on selected resource if task
requires deployment}

2: for each γ P Γ́: γ requires service deployment do
3: PerformServiceDeployment(γ)
4: return (Γ́,Λ)

and deployment information are available. This essentially
requires availability of up-to-date status information about
the resources including, resource type (cloud service, com-
putational device, sensor, etc.), its current location, available
functions, metadata on input requirements and output, cur-
rent resource utilization status (available memory, battery
life, processor, etc.), and the QoS parameters (availability,
cost, response time, etc.).

In the proposed GOM approach, peer nodes locally
maintain the status information of resources in their respec-
tive cells by polling them at regular intervals. This infor-
mation includes resource id, type, hardware and software
specifications, URI, lat-long location, availability, and QoS
parameters etc.

In each iteration of Algorithm 1, the workflow coordina-
tor receives the current resource availability status from the
connected peer nodes and updates its resource repository
R (line 2). In addition, it collects the current status of
all invoked tasks of the workflow (e.g., waiting for input,
executing, interrupted or failed due to unavailability of
binded resources, etc.) and their intermediate results (lines
3–4). This information guides the workflow coordinator to
select which workflow tasks to invoke next and interacts
with the user to receive any required inputs for such tasks
(line 5–6). Resource binding is then performed for all tasks
that need to be invoked (line 7).

Algorithm 2 outlines the steps in the resource binding
procedure. Given, workflow specification (W ), current ex-
ecution status of workflow tasks (κ), user inputs (µ), and
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availability status of cloud services and edge/IoT resources
(R), the workflow coordinator first discovers the resources
that meet the functional and QoS requirements of the un-
binded tasks and their interaction and then performs re-
source selection for task-to-resource binding based on some
optimality criteria (SelectResources() in line 1 of Algorithm
2). Several approaches exist in literature for optimal resource
selection in a fog/edge computing environment consider-
ing different optimization criteria (including battery life,
least number of disruption, longest availability duration,
response time and other QoS parameters) [5], [6], [7], [8].
Any such approach can be utilized by the workflow coor-
dinator for resource selection. In the selection process, the
workflow coordinator considers only those resources which
are compatible in terms of their data exchange requirements
and communication protocols.

Binding may also involve deployment of data pro-
cessing and/or integration services on edge/IoT resources
for executing workflow tasks (e.g., data integration for
plume generation task). To support service deployment, the
workflow coordinator selects resources that support service
deployment while considering the proximity and latency
requirements of the underlying resources for task execution.
In such cases, when a service needs to be deployed, URI of
the task is updated after deployment. For deployment, the
workflow coordinator dynamically deploys the executable
code for such a service on the selected edge device through
a container or virtual machine (VM) instance.

3.1.2 Coordination and management

The coordination and management component of the work-
flow coordinator is responsible for enabling communica-
tion/ interaction between data-dependent services that need
to communicate for example, for sharing their execution
results and data integration. For example, in our incident
management workflow, for plume generation, wind speed,
temperature, wind direction services need to communicate
with computation service for their data sharing. The work-
flow coordinator enables this interaction by specifying the
URI of each binded resource in the interaction. Ideally,
resources should be able to directly communicate with each
other. However, direct communication may not be possible
between two interacting resources belonging to different
cells since cross-cell devices may be out of range. In such
cases, workflow coordinator acts as a cross-cell message
relay entity – receives a message from one peer node and
then forwards it to another peer node. This is depicted in
lines 8–13 in Algorithm 1.

3.1.3 Adaptation

In a dynamic edge computing environment, the resources
used for deployment of data integration, pre-processing, or
other computation services, are often mobile and may move
out of the connectivity range of interacting devices or fail
during task execution. In such a situation, the computation
service needs to be migrated to a new edge device that is
within the connectivity range of the interacting data source
(e.g., sensor). Alternatively, new data sources that are within
the range of the moving host device need to be discovered
and binded to the disrupted task.

The adaptation component of the proposed approach is
responsible for monitoring the instantiated workflows for
any exceptional conditions i.e., failure or unavailability of
one or more binded resources during the workflow exe-
cution. Upon observing any exception or deviation from
required QoS performance, a recovery action is triggered
for workflow adaptation. This involves resource discovery,
selection, and binding for each disrupted task in the work-
flow and re-configuring the resource end-point references
for each affected interaction.

3.1.4 Discussion
In the GOM approach, the workflow coordinator has a
global view of all the resources and services, from the edge
infrastructure to the computation and storage places on
the cloud. Therefore, after receiving the orchestration and
management request of distributed application workflows
(which includes multiple tasks), it takes advantage of global
knowledge to perform task-to-resource binding.

The main advantage of this approach is simplicity – all
the orchestration and management functions and decision-
making are concentrated at a central component i.e., the
workflow coordinator. Moreover, it eases the consistency
concerns about resource availability and avoids conflict-
ing decisions by providing central control over the entire
system. Although the GOM approach supports efficient
resource binding for tasks requiring resource selection from
a large geographical area, due to its global view of resource
availability, its centralized resource management approach
suffers from the single point of failure and single point of
congestion. Significant communication overhead is incurred as
all connected peers report resource availability status to the
workflow coordinator by sending messages.

In addition, there are scalability concerns. The workflow
coordinator is responsible for orchestration and manage-
ment of all tasks in each workflow. This may become a major
performance bottleneck in case of high workloads when
several workflows need to be managed simultaneously.

To address these problems, we propose the Local Orches-
tration and Management approach that distributes the overall
workload among edge devices (peer nodes) in a context-
aware manner as discussed in the following section.

3.2 Local Orchestration and Management (LOM)

In this approach, orchestration and management of dis-
tributed workflow application is performed in a distributed
manner by different collaborating peer nodes. The central
workflow coordinator in the LOM approach is only respon-
sible for coordination and management and assignment of
workflow tasks to the peer nodes. Unlike the GOM ap-
proach, the coordinator is only aware of the peer nodes and
has no knowledge about the resource availability within the
cells. Each peer node has a local orchestration and manage-
ment component that supports binding, coordination within
cell, and adaptation of the tasks at cell level.

The workflow coordinator maintains information about
the different peer nodes including their availability status,
task assignment, and the execution status of different tasks
in the received workflow orchestration and management
requests. When the user submits a workflow orchestration
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and management request, the workflow coordinator assigns
the different tasks in the given workflow to suitable peer
nodes considering the location and contextual requirements
of the tasks. Peer nodes are then responsible for task-to-
resource binding. Peer nodes in LOM approach, contin-
uously interact with workflow coordinator for handling
orchestration and management requests, sharing their status
and execution results of assigned tasks.

ALGORITHM 3: Coordination and Management in Local
Orchestration and Management (to be executed by the
central workflow coordinator)
Input: Workflow : W “ pΓ, Λ)

1: Aw Ð H

2: while (true) do
3: P Ð Get status information of peer nodes
4: for each γ P Γ that are currently in execution do
5: κ Ð ReceiveExecutionOutputpγ, peerpγqq

6: for each γ P Γ that needs to be invoked do
7: if γ requires user input then
8: µ Ð ReceiveUserInputpγq

9: if γ requires binding to a cloud service then
10: γ.r Ð SelectCloudService(γ)
11: Aw.updateAssignment(γ, c)
12: else
13: pγ, pq Ð SelectPeerNodepγ,W,P, Awq

14: p.assignTask(γ,W, µ, κ)
15: Aw.updateTaskAssignment(γ, p)

ALGORITHM 4: Local Orchestration and Management (to
be execute by peer nodes)

Input: Workflow : W “ pΓ, Λ)
Input: Assigned Tasks : AΓ Ď Γ
Input: User input: µ
Input: Execution status : κ
Output: Updated Workflow pΓ́,Λq

1: while (true) do
2: R Ð Receive status of each resource in the cell
3: pΓ́,Λq Ð BindResources(W,R, µ, κ)
4: Λ́ Ð txpγ, γ́q, q, my| either γ or γ́ P AΓu Ď Λ
5: for each interaction xpγ, γ́q, q,my P Λ́ do
6: if (peer(γ) ‰ peer(γ́)) then
7: SendMessage(m)
8: return pΓ́,Λq

Algorithm 3 outlines the role of the workflow coordi-
nator in the LOM approach when it receives a new work-
flow orchestration and management request. Given a user
workflow request, W , the workflow coordinator interacts
with peer nodes in the overlay network to get their current
status information including their current location and QoS
parameters (line 3). This information is used for selection
of appropriate peers for workflow task assignment. As in
GOM, workflow coordinator keeps track of the current
execution status of each task in the workflow to decide
which tasks should be scheduled next and where they need
to be executed. For tasks that require binding to cloud
services, the workflow coordinator performs selection and
binding itself (lines 9—11). However, for the tasks which
require binding to edge/ IoT resources for their execution,
workflow coordinator selects peer nodes for orchestration
and management of the task (lines 13). For selection, work-

flow coordinator considers the location information given
in the workflow specification or infers it from the execution
results of preceding tasks. If multiple peer nodes satisfy
the location requirement, the workflow coordinator may
perform selection of a node satisfying closest proximity
criterion and/or the QoS characteristics of the nodes. The
task is then assigned to the selected peer node for binding
and instantiation (line 14).

As discussed, task orchestration and management is
managed by peer. When a task is assigned to a peer node,
it performs task-to-resource binding (Algorithm 2) based on
the current availability status of resources in its cell.

3.2.1 Adaptation

After resource binding, local orchestration manager initiates
monitoring of the assigned task(s). If it observes any excep-
tions such as binded resource for a task becomes unavailable
or a task deadline is missed, the local orchestration manager
re-selects another resource, performs binding, and notifies
any other peers involved for data sharing.

Algorithm 4 outlines the functionality of the Local
Orchestration Manager running at peer nodes. The local
orchestration manager continuously monitors the current
status of devices in its cell (line 2) and performs resource
binding for all assigned tasks which are unbinded or their
previously binded resource is no more available (line 3).
To enable data sharing among tasks spanning multiple
cells, peer nodes directly communicate with each other
by sending messages (lines 5–7). Note that in the LOM
approach orchestration and management of multiple tasks
are performed simultaneously by different peer nodes. If
various tasks have the same spatial requirements, then the
workflow coordinator assigns all such tasks to a single peer
node as long as the QoS conditions are satisfied.

3.2.2 Discussion

LOM approach brings additional complexity to the sys-
tem in terms of error recovery and fault handling. It also
introduces huge storage overhead for Local Orchestration
Managers. The main advantages of the LOM approach are
load balancing and scalability. The responsibilities of the
central workflow coordinator are shared between multiple
Local Orchestration Managers running at peer nodes.

LOM approach also incurs significant communication
overhead when a given workflow task requires resources
from multiple cells. For example, plume modeling task in
the incident management workflow may require sensory
data at different points of observation within a large area
spanning multiple cells. For such tasks, multiple peers
need to communicate with each other and lookup resources
in different cells). However, a major messaging overhead
incurred by the GOM approach for resource status shar-
ing with the central workflow coordinator by the peers is
avoided in the LOM approach.

Peer nodes in LOM approach have knowledge of avail-
able resources within their own cells, therefore locally opti-
mal resource selection by the peers does not guarantee that
the selection of resources for the entire application workflow
is also globally optimal.
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4 IMPLEMENTATION

The implementation in Java J2EE for both GOM and LOM
approaches includes the following four components:

1) Workflow Authoring Interface is a web-based component
developed in HTML5 and JavaScript which includes a
graphical user interface that allows the user to specify
workflow requirements in terms of tasks and their
interactions. This component also includes an interface
for registering cloud services, edge nodes, IoT devices,
and services that can be deployed.

2) Workflow Coordinator Component implements both global
and local workflow orchestration and management al-
gorithms for resource selection, binding, and messaging
with peer nodes and end devices.

3) Peer Node Component implements the proposed algo-
rithms for global and local orchestration and man-
agement at peer devices. In addition, it includes the
mechanism for managing the overlay network of peer
nodes and messaging between the different devices
using Apache Paho and Moquette.

4) End Device Component is installed on IoT devices to
communicate with the workflow coordinator and peer
nodes.

All these components are provided as executable JAR
files for deployment on devices equipped with Java Runtime
Environment (JRE) and MySQL server. Moquette MQTT
broker and Apache Paho clients are used for managing the
overlay network of peer nodes and messaging between the
different devices. Moquette is a Java-based broker of the
Message Queue Telemetry Transport (MQTT) light-weight
messaging protocol. Apache Paho is an open-source client
implementation of MQTT and MQTT-SN messaging proto-
cols for IoT.

The source code of all components has been made avail-
able as Eclipse Java Projects in a single GitHub repository
along with the instructions for downloading and setting up
the proposed solution1.

For experimental evaluation (discussed in Section 5),
we hosted the workflow coordinator on an Intel Core i7
machine (3.60 GHz processor; 16GB RAM) equipped with
JRE, and MySQL server. For peer nodes, we used Raspberry
Pi 3 devices with Raspbian operating system, JRE, and
MySQL DBMS. The peer nodes are connected with several
sensors/IoT devices (e.g., smartphones, tablets, tempera-
ture, and other environmental sensors) for providing sensor,
computation and data services.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed approaches by
considering an incident management workflow, specifically
focusing on plume modeling and traffic monitoring activi-
ties. We also compare the proposed approaches with the ex-
isting state-of-the-art ECStream Processing (ECSP) baseline
approach [9] on a license plate recognition workflow, which
though not a knowledge-driven workflow, is a standard
benchmark used in the literature.

The performance of the proposed approach is measured
using the following metrics:

1. https://github.com/aakhtar4/IoT-Centric-Workflows-Orchestration

Fig. 4. Delays dues to deadline misses and redeployment of tasks.

‚ Deadline Misses: If the output of a given task is not
generated by its associated deadline we refer it to as
a deadline miss. Any subsequent dependent tasks are
also delayed in case of a deadline miss.

‚ Redeployment Time: When a coordinator discovers
that a resource with an assigned task has become
unavailable, it performs re-selection, re-binding, and
re-deployment to execute the disrupted task at a new
resource. This re-selection, re-binding, re-deployment,
and restarting of the task at the new device constitutes
the redeployment time. Figure 4 elaborates on the delays
caused due to deadline misses and task redeployment.
Here ∆t denotes task duration i.e., the expected time
for the given task to generate its output.

‚ Communication Overhead: Communication overhead
is determined in terms of messages exchanged between
the workflow coordinator, peer nodes, and end devices
involved in workflow execution. These messages are
related to task assignments, task execution status, and
resource status updates.

5.1 Evaluation on Incident Management Workflow

The incident management workflow involves five key ac-
tivities including, plume modeling, plume visualization,
vehicle tracking, traffic flow monitoring, and vehicle re-
routing as shown in Figure 5. The plume modeling activity
involves two key tasks i.e., data buffering & integration task
and a plume model generation task. We are getting sensory
data observations from twenty-five different sensors (wind
speed, wind direction, temperature, humidity, and aerosol
concentration). The sensors are located in three different
cells near the incident site. All these sensors are sending
their data with different granularity to data buffering &
integration service deployed in the proximity of incident
location. The integrated data is fed to a cloud service for
plume model computation. Plume modeling service receives
integrated data at fixed intervals and generates the plume.
Workflow coordinator imposes the resulting plume model
on Google Map for visualization and identifying at-risk
areas. Vehicle tracking cloud service is then invoked by the
workflow coordinator to track and re-route any vehicles
currently within the identified at-risk region or heading
towards it. For re-routing, the workflow coordinator selects
the alternate routes through Google Map Direction Service.
Traffic flow monitoring activity is executed to monitor traffic
flow and possibility of congestion on the selected alternate
routes. Live camera feed of 12 cameras at 3 intersection
points (3 cells) is obtained (10 second video clips) and
buffered by data buffering and integration service. Each
video clip is processed by traffic flow monitoring services
deployed on three peer devices near the intersection points.
If an alternate route is found congested, the workflow
coordinator selects another route and re-routes the vehicles



IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, APRIL 2023 8

to the less congested route. This workflow continuously
executes. Whenever the plume model indicates a change
in at-risk region, subsequent tasks in the workflow are
performed as per the new region identified.

Fig. 5. Incident Management Workflow Implementation

The environment we considered for Incident Manage-
ment Workflow comprises 20 peer nodes directly connected
to the Workflow Coordinator. In GOM configuration, the
Workflow coordinator is responsible for maintaining the
status of all peer nodes, as well as each of the 20 devices con-
nected to each peer nodes i.e., 400 end devices. Workflow
coordinator is notified about the updated status of devices
after every 2 seconds. In LOM configuration, workflow
coordinator is only maintaining the status of 20 peer nodes.
Each peer is responsible for maintaining the status of its
connected 20 end devices. The availability of devices in
the cells is modeled using exponential distribution where
the average residence time of each end device in the cell
is assumed to be 5 minutes. As discussed above, in the
incident management workflow, the data buffering service
that feeds to the plume modeling service is deployed on
the peer operating in the cell of the incident site however,
the sensory observations are collected from sensors in three
cells. Instances of video buffering and integration service
feeding the traffic flow monitoring service are deployed on
3 peer nodes operating in the cells of 3 intersection points
for traffic monitoring.

This streaming workflow is executed for 60 minutes.
Selection, binding, and service deployment are performed
iteratively whenever any of the devices executing a work-
flow task becomes unavailable. The availability of devices
in the cells is modeled using exponential distribution con-
sidering an average residence time of devices in a cell to be
5 minutes.

5.1.1 Evaluation Results
Table 1 presents the experimental evaluation results of
plume modeling and traffic flow monitoring activities for
incident management for both GOM and LOM approaches.
We executed this workflow for 60 minutes.
Plume Modeling Activity. We considered a 58 seconds dead-
line for this workflow i.e., the plume model is expected
to be updated every 58 seconds. The data buffering &
integration task feeding plume modeling cloud service was
hosted and executed on an end device in one cell however, it
required sensory observations from three different cells. Re-
binding (selection, mapping, and service deployment) of a
new device is performed for the data buffering & integration
service if its host device becomes unavailable. Similarly, if

TABLE 1
Experimental Evaluation of Incident Management Workflow

Average Residence Time of devices in a cell: 5 min.

Activity Plume Modeling Traffic Monitoring

Parameters GOM LOM GOM LOM

No. of Deadline
Misses

22 (out
of 62)

23 (out
of 62)

45 (out
of 270)

43 (out
of 270)

Total Delay due to
Deadline Misses

169.83
sec

207.44
sec

126 sec 111 sec

Total Redeployment
Time

90.66
sec

105.57
sec

145.35
sec

132.65
sec

Total No. of Mes-
sages Exchanged for
Redeployment

176 276 360 258

a source sensor becomes unavailable, re-selection and re-
mapping of a new sensor are performed. For the 60-minute
long workflow, there are 62 deadlines given that an output
needs to be generated after every 58 seconds.

In the GOM setting, 22 deadline misses were observed
i.e., 35%. Average delay for the activity was 7.72 seconds
and the average redeployment time was 4.12 seconds. Re-
deployment of the data buffering & integration task or
replacement of a sensor in GOM configuration required
an exchange of 8 messages. A total of 176 messages were
exchanged in this case for 22 device failures/ unavailability
(host device/ sensor).

In the LOM setting, we observed 23 deadline misses i.e.,
37%. Average delay due to deadline misses was 9.02 sec-
onds and the average redeployment time was 4.59 seconds.
Each redeployment required an exchange of 12 messages.
This includes messaging between peer nodes to look up
sensory devices in three cells involved in environmental
data collection. A total of 276 messages were exchanged to
handle 23 device failures/ unavailability.
Traffic flow monitoring activity. We considered a 40 seconds
deadline for this activity. A video buffering & integration
task was hosted and executed in parallel on three devices in
different cells. For the 60-minute long workflow, there is a
total of 90 deadlines per device considering that an output
needs to be generated after every 40 seconds.

In the GOM setting, 45 deadlines were missed i.e., 24%.
Average delay for the task was 2.79 seconds and average
redeployment time was 3.23 seconds. Each redeployment in
this case required exchange of 8 messages. A total of 360
messages were exchanged for 45 redeployments.

In the LOM setting, we observed 43 deadline misses for
this task i.e., 23%. Average delay due to deadline misses was
2.58 seconds and average redeployment time was 3.08 sec-
onds. Redeployment of the traffic flow monitoring-related
tasks required an exchange of 6 messages. A total of 258
messages were exchanged in this case for 43 redeployments.

The results in Table 1 depicts that for the plume model-
ing activity, GOM performed better than LOM in terms of
deadline misses, total delay, redeployment time, and com-
munication overhead. However, for the traffic monitoring
activity, LOM performed better than GOM on all four met-
rics. The reason is that in the plume modeling activity, there
is a higher degree of cross-cell data dependency. Specifically,
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TABLE 2
Effect of cross-cell data dependence on performance of GOM and LOM for the Plume Modeling Activity

Average residence time of devices in a cell: 5 min.
Cross-cell data dependence ratio 10:1 8:1 4:1 0:1

GOM LOM GOM LOM GOM LOM GOM LOM
No. of deadline misses (out of 62) 22 23 20 20 18 19 16 16
Total Delay due to Deadline Misses 169.83 sec 207.44 sec 133.76 sec 180.76 sec 101.42 sec 138.82 sec 41.97 sec 34.47 sec
Total redeployment time 90.66 sec 105.57 sec 71.72 sec 84.83 sec 45.114 sec 72.32 sec 24.08 sec 20.28 sec
Total No. of Messages Exchanged
for Redeployment

176 276 160 240 144 228 128 96

the data buffering and integration (DBI) service deployed in
one cell required sensory data observations from multiple
sensors in three different cells (5 sensors from each cell).
Whereas, there was no cross-cell data dependence in case
of the traffic monitoring activity. When there is a higher
degree of cross-cell data dependence, the central coordinator
having knowledge of the availability status of all devices
incurs lesser overhead in terms of message exchanges and
redeployment time when devices become unavailable. Thus,
resulting in fewer deadline misses and lesser delay. In the
case of LOM, peers need to communicate with each other
to share device status of their respective cells when there is
cross-cell data dependency as discussed in Section 3.2.2.

In order to confirm this hypothesis, we carried out
additional experiments to evaluate the effect of cross-cell
data dependence. Table 2 shows the performance of both
GOM and LOM for the plume modeling activity for a
number of cross-cell data dependence settings. Specifically,
we considered three cells for the plume modeling activity,
each having an equal number of sensors feeding data to
the DBI service (which was hosted on a device in one of
these three cells). The degree of cross-cell data dependence is
measured based on the number of sensors that provide data
to the DBI service in a different cell. For example, if 5 sensors
in each of the 3 cells provide data to the DBI service then the
degree of cross-cell dependence is 10:1 because there are 10
sensors in 2 cells (Cell-1 and Cell-2) that provide data to the
DBI service hosted in Cell-3. The remaining 5 sensors are in
the same cell of the DBI service. Similarly, the cross-cell data
dependence of 0:1 implies no data sharing between cells
for task execution, though there may be data dependence
within a cell. In Table 2, the results for 0:1 data dependence
are computed considering 2 sensors within the same cell
providing data to DBI service.

The results depicted in Table 2 confirm that the degree of
cross-cell dependence significantly affects the performance,
and the gap between the two approaches increases as the
degree of cross-cell data dependence increases. Thus, while
the LOM approach outperforms GOM when there is no
or very low cross-cell data dependence, for even medium
cross-cell data dependence (4:1), GOM starts outperforming
LOM. This also highlights the need for a hybrid approach
that allows workflow orchestration to switch from GOM
to LOM and vice versa as the degree of cross-cell data
dependence changes during workflow execution. Note that
such cross-cell data dependence may not be predicted in
advance for knowledge-driven workflows as discussed in
the introduction. While this is not considered further in this
work, we plan to examine this in the future.

5.2 Evaluation on License Plate Recognition Workflow
The License plate recognition workflow comprises of Video
Decoding, Object Detection, and License Plate Recognition
tasks as described below and depicted in Fig. 6.

Video Decoding. This task takes a video as input, par-
titions it into 10-second clips, and then extracts frames
(FFmpeg images) from each clip. Each clip is divided into
30 frames which are fed to the object detection task.

Object Detection. This task takes frames as input and pro-
vides detected car images as output. In our implementation,
we have utilized an object detection service that employs
a deep neural network model, YOLOv3. It detects objects
from frames, extracts the images with recognized vehicles,
and stores them. These object images are then transferred to
the device running the license plate recognition task.

License Plate Recognition. This task takes vehicle images
as input and performs detection and recognition of the
license plate by invoking the OpenALPR library functions.
It returns the list of license plates with a confidence value.

The configuration we considered, in this case, consists
of the workflow coordinator, 3 Raspberry Pi peer nodes
(1 peer device per cell), and 2 end devices connected per
peer device. Note that the workflow coordinator and all the
devices are located on the same WLAN. Average residence
times of devices in a cell are considered to be 5, 7.5 minutes,
and 10 minutes.

Each workflow task is deployed on a separate peer
device such that video processing is performed in a clip-
by-clip manner. Peer node 1 performs video decoding and
sends extracted frames to peer node 2. Peer node 2 performs
object detection from the received frames and then shares
the images with peer node 3. Peer node 3 performs a license
plate recognition task.

Fig. 6. License Plate Recognition Workflow Implementation

For both GOM and LOM approaches, the coordinator
(global/local) is updated after every 5 seconds with the
current state of the connected devices. If the coordinator
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TABLE 3
Experimental Evaluation of License Plate Recognition Workflow (considering task execution in three cells)

Parameters Avg. Residence Time: 5 min. Avg. Residence Time: 7.5 min. Avg. Residence Time: 10 min.

GOM LOM GOM LOM GOM LOM

No. of Deadline Misses (out of 30) 29 26 28 25 26 23

Total Delay due to Deadline Misses 181 sec 153 sec 171 sec 144 sec 158 sec 131 sec

Total Redeployment Time 223.01 sec 162.76 sec 220.64 sec 153.51 sec 200.31 sec 145.13 sec

Total No. of Messages Exchanged for
Redeployment

174 104 168 100 156 92

TABLE 4
Comparative Evaluation Results for ECSP, GOM, and LOM Approaches for License Plate Recognition Workflow (Single cell configuration).

Parameters Avg. Residence Time: 5 min. Avg. Residence Time: 7.5 min. Avg. Residence Time: 10 min.

GOM LOM ECSP GOM LOM ECSP GOM LOM ECSP

No. of Deadline Misses (out of 30) 29 26 24 28 25 23 26 23 22

Total Delay due to Deadline Misses 145 sec 112 sec 100 sec 137 sec 106 sec 95 sec 126 sec 97 sec 90 sec

does not receive a heartbeat message after 5 seconds, it
assumes that the device has left.

5.2.1 Evaluation Results
The experiments for license plate recognition workflow
were conducted using a Dashcam stream captured dur-
ing a ride through London downtown in HD quality of
1,920ˆ1,080 pixels. The workflow had a total of 30 deadlines
for processing the video at 3 peer devices. Table 3 presents
the evaluation results. First, we note that there is very little
cross-cell dependence in this workflow (1:1), and therefore
as supported by our prior analysis, the LOM approach
outperforms the GOM approach on all 4 metrics. We also
wanted to examine the impact of the average residence
time of devices within each cell on the different metrics. As
expected, the number of deadline misses and average delay
decreased as we increased the average residence time. Note,
however, that the degree to which LOM outperforms GOM
does not change with respect to the average residence time.
Redeployment of a task in this workflow had an associated
communication overhead of 6 message exchanges in the
GOM configuration and 4 message exchanges in the LOM
configuration. It can be observed that in this case, the total
number of messages exchanged for handling redeployments
was higher for the GOM approach as compared to LOM.
This is because of the additional messaging between the cen-
tral workflow coordinator and local orchestration managers
for resource redeployment in GOM. Note that each task
in this workflow was performed within one cell therefore,
cross-cell communication for this workflow only involves
data sharing between peers.

5.3 Comparison with ECStream Processing Approach
ECSP [9] is a decentralized approach that extends the func-
tionality of Apache NiFi stream processing middleware to
provide support for dynamic clustering of edge devices
to enable dynamic deployment of workflow tasks on the
clustered edge devices. The idea is to provide a shared

pool of resources via clustered edge devices for parallel
processing of workflow tasks. These clustered devices act
as both cluster coordinators and worker nodes.

ECSP approach comprises of the following steps: (i) First,
Clusterization of edge devices is performed. Clusterization is
initiated by an edge node that needs to offload a computa-
tional task to peers by broadcasting offloading requests to
edge devices in its range (cell). Upon receiving a request,
eligible devices in the cell decide whether to participate; (ii)
Device selection is then performed by the initiator/ coordi-
nator node by taking into account the QoS constraints and
mobility patterns; (iii) Placement and Configuration is then
performed by assigning tasks to selected nodes by sending
configuration parameters. A customized ZooKeeper Place-
ment & Orchestration module is configured on each device
for cluster establishment and configuration. The cluster then
executes the deployed tasks in parallel on its nodes.

Prototype configuration. For the prototype setup of the
ECSP approach, Apache Nifi and Zookeeper were config-
ured on 5 Raspberry Pi devices. Executable instances of
ECSP Cluster middleware with customized Nifi processors
were also deployed on all devices. All these devices were
located on the same WLAN to trigger the ECSP clusteri-
zation process. For these experiments, we considered the
License Plate Recognition workflow which was executed by
ECSP with task-level parallelism on an edge cluster created
by five devices. In the given setup, Zookeeper allocated the
tasks to all available devices since all devices are capable
of task offloading. Note that ECSP does not support cross-
cluster communication therefore for comparison we only
considered all three tasks executing in a single cell.

For comparison with ECSP, the setup we considered for
GOM and LOM approaches comprised a server machine
acting as the central workflow coordinator, and 6 Raspberry
Pi devices including, one peer node and five end devices.

The evaluation metrics we have considered for this
comparison are the number of deadline misses and the
associated delay. Since we are unable to instrument the
ECSP approach, we could not compute the redeployment
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times and the total number of messages exchanged.

5.3.1 Results & Discussion.
It can be observed from Table 4 that ECSP outperforms
both GOM and LOM in terms of the average delay due to
deadline misses for all three residence times. However, we
stress that the License Plate Recognition Workflow utilizes a
single-cell configuration since ECSP does not support cross-
cell coordination. Specifically, any tasks that span across
multiple cells cannot be accomplished by ECSP due to
the absence of central coordination and lack of interaction
among the edge clusters. Whereas in GOM, peers communi-
cate with each other via the central coordinator, and in LOM
via direct messaging. This is exactly why the ECSP approach
cannot be utilized at all for the incident management work-
flow where the plume modeling activity requires cross-cell
interaction. Finally, we note that even when there is no cross-
cell data dependence both LOM and GOM require roughly
comparable (though more) time, while having the ability to
deal with cross-cell data dependence, if needed.

6 RELATED WORK

We discuss the related works in the context of distributed
workflow composition, distributed application deployment
& container migration, and serverless computing.

6.1 Distributed Workflow Composition
Most works on distributed workflow composition and
adaptation are based on AI planning approaches. Given a
composition goal, these approaches generate a plan [10],
[11]. Chen et al. proposed GoCoMo [10], a goal-driven
service composition framework in a mobile computing
environment. GoCoMo leverages a decentralized planning
algorithm based on backward chaining to support goal-
driven service discovery with opportunistic service execu-
tion and QoS-based heuristic discovery checking. Moeini
et al. [11] proposed a decentralized planning technique
based on Graphplan that given a goal, achieves composition
of distributed services by building a logic-based overlay
network that models the logical relationships of IoT services.
While some of the planning-based approaches e.g., GoCoMo
[10] support dynamic adaptation due to mobility/ unavail-
ability of binded devices or changes in QoS parameters,
these approaches are not designed to support data analytics
and streaming workflows that require edge devices to pre-
process and integrate data from multiple sensors or IoTs.

Other related works on service selection and task
assignment involve worklfow graph partitioning and
optimization-based approaches [12], [13], [14], [15], [16]. Ko
et al. proposed the SoIoT framework [17] to address the
problem of selection, composition, and delivery of user-
centric services in IoT environment. They used a graph
coloring-based heuristic for optimal service assignment to
IoT devices. Lera et al. in their work on availability-aware
service placement [16] proposed a two-phase partitioning-
based optimization algorithm. The idea is to use a combi-
nation of complex network communities for device parti-
tioning and service transitive closures for application graph
partitioning with the objective to optimize service avail-
ability and QoS. Renart et al. proposed a programming

framework for dynamic data stream processing leveraging
edge computing resources [18]. This programming frame-
work builds on a stream-processing overlay network that
coordinates the execution of the distributed streaming ap-
plication workflows using a publish/subscribe messaging
model to facilitate content-based interactions among work-
flow participants. A location-aware protocol has been used
for efficient allocation of streaming computation at the edges
of the infrastructure along the data path from data source
to consumer. Our proposed approach uses a similar idea
of an overlay network for orchestration and management
of location-aware knowledge-driven workflows which are
both emergent and evolvable as opposed to the streaming
workflows considered in above mentioned works.

6.2 Distributed Application Deployment and Container
Migration
Distributed application deployment is a challenging prob-
lem in a cloud and edge computing environment where de-
vices are resource-constrained, geographically distributed,
and highly dynamic. Several works have been carried out
in the past few years to propose optimal service placement
considering different placement characteristics, deployment
constraints (resource capabilities, network constraints, and
application requirements such as delay sensitivity and lo-
cality), and strategies [8], [19], [20], [21], [22], [23], [24]. It
is worth noting that optimal service placement approaches
rely on a central entity having complete knowledge of the
infrastructure and all application components for decision-
making on task offloading/ service placement. Our pro-
posed GOM approach also relies on global knowledge
and can employ any of these existing approaches for op-
timal task assignment, such centralized approaches have
scalability-related concerns. While decentralized placement
strategies improve scalability, in general, such strategies
cannot achieve a global optimum [25].

Decentralized approaches to handle the scalability con-
cern consider a limited geographic region (cell) for appli-
cation deployment and cluster the resources within that
region to achieve scalability and load balancing [9], [25],
[26]. Existing resource clustering-based approaches consider
a restricted application topology, where applications are
monolithic or all tasks are executed in a single cluster
/ geographic cell [9], [16], [25], [27], [28]. Furthermore,
most of the approaches consider the mobility of end-user
devices [29], not the edge devices and IoT resources, and
are not designed to support cross-cluster coordination and
data exchange among workflow tasks [19], [25]. In the
distributed workflows we are considering, tasks may need
to be executed in multiple geographic regions due to the
location requirements of the workflow and changes in the
operational environment due to intermittent availability/
mobility of edge and IoT devices.

6.3 Serverless Computing
Serverless computing paradigm enables development of
applications decomposed into microservices and deploy-
ing these microservices to containers in the cloud edge
continuum. A microservice essentially implements certain
functions of the application thus, serverless computing can
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be viewed as Funtion-as-a-Service (FaaS). Recently, a lot of
attention has been given to using FaaS model to develop
advanced IoT applications with strict QoS requirements
[30], [31]

Garbugli et al. proposed an IoT-oriented middleware
[30] for management and execution of application functions
on the virtualized resources in the edge cloud continuum
based on the application’s QoS requirements. Puliafito et
al. proposed a framework for composition and execution
of stateful and location-aware applications with realtime
processing and latency constraints in the FaaS model [31].
Specifically, the proposed framework enables functions de-
ployed on edge nodes to dynamically migrate between
remote state storage and local state storage depending on
the latency and bandwidth requirement of the application
which may keep on changing during execution. Barcelona-
Pons et al. proposed Crucial [32], a system to program
highly-parallel stateful serverless applications such as ma-
chine learning and scientific computing workflows. Crucial
allows to port a multi-threaded code base to FaaS platform
for improving scalability and reducing infrastructure cost.

These middleware solutions discussed above are primar-
ily designed for allocation and provisioning of virtualized
resources/ containers in the edge cloud continuum and do
not consider the application semantics and their contextual
dependencies. Our proposed framework which is designed
for knowledge-driven workflow applications can leverage
these middleware solutions for management of QoS and
application latency constraints.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a centralized as well as a
distributed approach for dynamic orchestration and man-
agement of IoT-centric distributed workflow applications.
Both approaches are designed for knowledge-driven busi-
ness process workflows that are adaptive, interactive, evolv-
able, and emergent. These approaches provide support for
location-aware and flexible service/resource selection, itera-
tive/incremental binding, and dynamic service deployment
by taking into account resource availability status, spatio-
temporal constraints, and resource constraints of the under-
lying service infrastructure as well as real-time processing
constraints of the application. A comprehensive experimen-
tal evaluation performed by emulating two real-time data
streaming workflow examples shows the effectiveness of
our proposed approaches.

In the future, we plan to work on several underlying
technical challenges including, building capabilities for fault
tolerance and resilience in orchestration and management
of knowledge-driven workflows, and the security & privacy
concerns of collaborating parties.
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