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A conservative and consistent three-dimensional Cartesian cut-cell method is presented 
for reducing the spurious pressure oscillations often observed in moving body simulations 
in sharp-interface Cartesian grid methods. By analysing the potential sources of the 
oscillation in the cut-cell framework, an improved moving body algorithm is proposed 
for the cut-cell method for the temporal discontinuity of the solid volume change. Strict 
conservation of mass and momentum for both fluid and cut cells is enforced through 
pressure-velocity coupling to reduce local mass conservation errors. A consistent mass 
and momentum flux computation is employed in the finite volume method. In contrary 
to the commonly cut-cell methods, an implicit time integration scheme is employed in the 
present method, which prevents numerical instability without any additional small cut-cell 
treatment. The effectiveness of the present cut-cell method for reducing spurious pressure 
oscillations is demonstrated by simulating various two- and three-dimensional benchmark 
cases (in-line and transversely oscillating cylinder, oscillating and free-falling sphere), with 
good agreement with previous experimental measurements and other numerical methods 
available in the literature.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In computational fluid dynamics, two- (2D) and three-dimensional (3D) fluid flow over moving complex geometries 
appear in many practical engineering applications, e.g. marine hydrodynamics, offshore renewable energy, and fluid-structure 
interaction problems. In contrary to deal with the complex geometries in boundary-fitted methods [1–3] which needs re-
meshing, Cartesian grid methods have become a popular alternative to solve fluid flow in a fixed Cartesian grid for moving 
body problems, due to its simplicity for mesh generation and easy data structure management [4,5].

Despite significant progress has been made for Cartesian grid methods (see reviews for immersed boundary method 
(IBM) [6], immersed interface method (IIM) [7], and the Cartesian cut-cell method [8]), there exist spurious pressure oscilla-
tions for Cartesian grid methods for moving body problems, which are associated with local mass conservation [9]. In IBM, 
the forcing term is added to the momentum equations without strictly satisfying the continuity equation [4], which lead to 
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pressure oscillations. There have been only a few IBM studies [9–19] on this issue in the literature and several techniques 
have been proposed to improve pressure oscillations. For the diffuse-interface IBM [11–13], a smooth delta function is used 
to spread the force across several stencils so that the oscillations are reduced. For the sharp-interface IBM, flow recon-
struction [10] and extrapolation technique [14] are proposed to reduce the oscillations. Through modifying the continuity 
equation via a mass source/sink function [15–19], the pressure oscillations can be improved. Seo and Mittal [9] combined 
the cut-cell approach for the continuity equation and IBM for the momentum equation, the local mass conservation errors 
are further reduced, which leads to improved pressure oscillations.

In contrary to IBM, the Cartesian cut-cell method is very attractive as it enforces strict conservation of mass and momen-
tum at a discretised level, even near the immersed boundary. The Cartesian cut-cell method has been applied to moving 
body problems for single-phase [20–25], multiphase flows [26–30] and fluid-structure interaction [31–33]. A common prob-
lem for cut-cell methods is the small cut-cells generated near the solid boundary which lead to numerical instability if there 
is no special treatment for small cells [34], which make it challenging to apply in 3D flow problems, especially involving 
moving geometries. Schneiders et al. [23] found that there is spurious pressure oscillation for the cut-cell method with the 
cell merging technique [22] and a smooth discretisation operator coupled with the cut-cell method can reduce the pressure 
oscillations.

In the present study, motivated by the previous studies to reduce spurious pressure oscillations, we further analyse the 
source of pressure oscillations in the Cartesian cut-cell framework. A conservative and consistent mass and momentum flux 
computation is used to ensure strict conservation of mass and momentum, even for the cut-cells, which is different from 
most of the IBMs. In addition, an implicit time integration scheme is used for the governing equations without any additional 
small-cell treatment, which prevents the common instability problems in small cut-cells existing in the literature. In order 
to further reduce the local mass conservation error associated with our piecewise-liner cut-cell boundary construction [35]
for curved geometries, a new moving body algorithm is proposed here to significantly improve the local mass conservation 
error to reduce the pressure oscillations without interpolations and modifying cut-cells with smooth functions.

The paper is organised as follows. The description of the mathematical formulation and analysis for the source of pressure 
oscillations are presented in Section 2. The numerical method and cut-cell discretisation are presented in Section 3. The 
improvement of the pressure oscillations of the present cut-cell method is demonstrated by a number of 2D and 3D moving 
body flow problems in Section 4. Conclusion and future work are finally discussed in Section 5.

2. Mathematical formulation and source of pressure oscillation

2.1. Governing equations

The governing equations considered are the non-dimensional unsteady incompressible Navier–Stokes equations, given as:

∇ · u = 0, (1)
∂u

∂t
+ ∇ · (u ⊗ u) = −∇p + 1

Re
∇2u, (2)

where u is the non-dimensional velocity vector with components (u, v, w) in the streamwise (x), vertical (y) and spanwise 
(z) direction, t and p are the non-dimensional time and pressure, and Re is the Reynolds number.

2.2. Moving geometry algorithm

In order to simulate the moving geometries, mass and momentum conservation are enforced at the cut cells (which 
contains both the fluid and solid) as well as the fluid cells, and the original governing equations are revised as [35]:

∇ · u = 1

V

dV solid

dt
= ψ, (3)

∂u

∂t
+ ∇ · (u ⊗ u) = −∇p + 1

Re
∇2u + uψ, (4)

whereas V solid is the solid volume inside a control volume V and ψ is the mass source/sink term for the continuity equation. 
In the present cut-cell method, the above same governing equations are employed for all the control volumes which include 
either the full or cut cells, whereas the term ψ is zero for fluid cells and has a different value for each cut-cell which is 
related to the location of the moving body and its intersection with the background stationary Cartesian grid. It is worth 
noting that for flow over a fixed geometry, ψ = 0 for both fluid and cut cells as there is no change of the solid volume with 
respect to the time.

2.3. Source of pressure oscillation

Several numerical methods have been developed in the past to reduce the spurious pressure oscillation for moving 
body problems and they can be classified based on the revised governing equations as shown in Table 1. It is noted that 
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Table 1
Comparison between Cartesian grid methods based on the mass source/sink term ψ and the momentum body force term 
F . U B is the moving velocity for the solid body, n is the normal vector of the cell face with surface area A.

Method Examples ψ F

IBM-diffuse interface with smooth function [11–13] 0 F IBM

IBM-sharp interface with extrapolation [14] 0 F IBM

IBM-sharp interface with mass source [15–18] 1
V

∑
U B · nA F IBM

IBM-sharp interface with cut-cell [9] 1
V

dV solid
dt F IBM

Partial cell treatment [36] ∇ · U B 0

Cartesian cut-cell method [35] 1
V

dV solid
dt uψ

only the forcing term F IBM is applied for the momentum equations in immersed boundary methods, without satisfying the 
continuity equation [9]. Several techniques, such as using a diffuse-interface IBM with smooth delta functions [11–13] or 
sharp-interface IBM with extrapolation [14], are proposed to suppress the pressure oscillation. In addition, a modified mass 
source term has been added together with the forcing terms for IBM to improve the pressure oscillation. However, the main 
source of pressure oscillation (such as for pressure equation or pressure correction equation) is local mass conservation 
error [9], which is related to the geometrical conservation of the dead and fresh cells, and the local geometry of the 
immersed body represented by the background Cartesian grid (shown in Fig. 1). Thus both the cut-cell IBM [9] and the 
partial cell treatment method [36] are proposed to satisfy the local mass conservation for a cut-cell, which significantly 
reduces the spurious pressure oscillation. However, the cut-cell approach is not considered for the momentum equations in 
a consistent way. Recently, the Cartesian cut-cell method [35] is developed, in which the cut-cell discretisation is taken into 
account for both the continuity and momentum equations to improve the spurious pressure oscillation.

In order to further investigate the local mass conservation error, a moving body with velocity U B = (U B , V B) is con-
sidered in a 2D Cartesian grid shown in Fig. 1, where the fluid mass change and solid change are clearly presented from 
one time step to the next time step. A θ function is introduced in the cut-cell method [35], which represents the actual 
fraction of the total volume and face area available to the flow. Its value is 1 for fluid cells and 0 for solid cells whereas 
0 < θ < 1 for cut cells. It can be seen that the fresh and dead cells are considered through the local mass conservation via 
Eq. (3). However, when considering a curved geometry, the actual geometry of the body is slightly different from the cut-cell 
representation due to the piecewise-linear boundary construction in the Cartesian cut-cell method (shown in Fig. 1(b) and 
Fig. 1(c)). This might lead to local mass conservation errors due to the evaluation of the term dV solid

dt . Seo and Mittal [9]
already discussed this term as geometrical difference and noted that the pressure oscillation error is proportional to the cell 
area (2D) or volume (3D), and inversely proportional to the time step size. Thus, the pressure oscillation is reduced when 
the mesh is refined or when a larger time step size is used.

It is worth noting that using a high-order cut-cell representation of the interface (rather than piecewise-linear boundary 
construction) could potentially improve the calculation for the term dV solid

dt . However, the temporal variation of the volume 
change might still be large and there might be a discontinuity to calculate the gradient. In the present study, we use 
a slightly different approach to calculate the mass/sink term ψ , which uses the integral form to transform the temporal 
volume variation to a continuous velocity field from the body motion. The more detailed cut-cell discretisation and the 
treatment for the dead and fresh cells are discussed in Section 3.

3. Numerical method

The numerical method used in this study is based on the Cartesian cut-cell method for two-phase flows with moving 
bodies described by [35], but with a different moving body treatment. We provide a very brief description of the method 
for the single-phase incompressible Navier-Stokes equations here and the detailed information can be found in the original 
paper [35].

3.1. Cartesian cut-cell method

The finite volume method is employed to discretise the governing equations because it enforces the conservation of 
mass and momentum at a discretised level. The staggered Cartesian grid is used in this study, which has the advantage 
of strong coupling between the velocity and the pressure. Fig. 2 shows an example of the problem setup and the variable 
arrangement in a 3D Cartesian grid with cut-cells together with the name of locations used in the discretisation, in which 
the pressure is stored at the cell centre and the velocities are located on the face centre of the control volume.

In this study, the complex geometry of a solid is represented by a general level set function ϕ(x, y, z), in which the value 
ϕ(x, y, z) > 0 in the fluid domain and ϕ(x, y, z) < 0 inside the solid domain. The solid boundary is represented as a sharp 
piecewise linear interface when ϕ(x, y, z) = 0, and it is a straight line in 2D (Fig. 2(c)) and a sloping plane in 3D (Fig. 2(b)). 
For a full fluid cell, the cell volume is � = ˝

�
d� = �x�y�z and the area of the face A is similarly calculated, e.g., the 

one of the east face Ae is Ae = ˜
e dS = �y�z. For a cut-cell shown in Fig. 2(b), the cell volume and the area of the east 

face are obtained as θc�x�y�z and θe�y�z, respectively. For example, Fig. 2(c) shows the 2D cut surface for the back face 
Z. Xie, P. Lin and T. Stoesser Journal of Computational Physics 459 (2022) 111124
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Fig. 1. Moving body problem in a fixed Cartesian grid. (a) 2D computational setup and arrangement of variables (p, u, v), in which the velocities are stored 
on the face of the control volume and the pressure is stored at the centre of the control volume on a staggered Cartesian grid. The location of the moving 
boundary is shown at tn and tn+1 time levels. Cut cells are shown in blue, where ‘DC’ and ‘FC’ represent the dead and fresh cells during one time step, 
respectively; (b) and (c) are two examples of a 2D cut-cell and the θ function change during one time step, with the yellow shaded area being solid. Red 
and blue lines are the actual geometry and the geometry represented by the cut-cell method. The subscripts e, w, n, and s denote the corresponding face 
of the control volume. �x, and �y are the grid spacing in the x, and y directions, respectively. (For interpretation of the colours in the figure(s), the reader 
is referred to the web version of this article.)
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Fig. 2. Schematic of a three-dimensional flow with a moving complex geometry: (a) 3D computational setup; (b) example of a 3D cut-cell with the yellow 
shaded area being solid. Name of the locations used in the discretisation is also shown, in which P is the present node, the upper-case letter E, W, N, S, 
B, and R denote neighbouring nodes on the east, west, north, south, back, and front with respect to the central node P. The lower-case e, w, n, s, b, and 
r denote the corresponding face of the control volume and c is the centre of the control volume. �x, �y, and �z are the grid spacing in the x, y, and z
directions, respectively; and (c) example of a 2D cut-cell on the back face of the control volume shown in (b).

of the 3D cut cell in Fig. 2(b). If the solid cuts from the middle of the edge on the north and east face, we can calculate 
the active cut edges as θw = θs = 1 and θn = θe = 0.5, and then the cut surface of the fluid area on the back face can be 
computed as θb = 7/8. The area of the other faces can be calculated in a similar way and finally the cut volume can be 
obtained. More details about the 3D Cartesian cut-cell method can be found in [35].

3.2. Cut-cell treatment for the momentum equation

Considering a volume of fluid cell � which has an arbitrary domain, the surface of the control volume is S and the unit 
outward normal vector to the face f is n. The momentum equation (Eq. (4)) can be recast into an integral formulation as 
below

˚
∂u

∂t
d� +

¨
(u ·n)udS =

˚
−∇pd� +

¨
1

Re

∂u

∂n
dS +

˚
uψd�. (5)
� S � S �

5
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A backward difference scheme is used for the time derivative term in Eq. (5), which leads to an implicit scheme for the 
Navier–Stokes equations for the latest time level n + 1, such as the first-order backward Euler scheme as

˚

�

∂u

∂t
d� = un+1 − un

�t
θc�, (6)

or the second-order backward Euler scheme as
˚

�

∂u

∂t
d� = 3un+1 − 4un + un−1

�t
θc�, (7)

where �t is the time step. For the implicit scheme, the θ function and flow variables are taken at the latest time level n + 1
for the spatial discretisation as below. The solid fraction change during one time step �t is considered in the source term 
ψ .

The finite volume discretisation of the advection term in Eq. (5) is obtained as
¨

S

(u ·n)udS =
∑

f

mfuf, (8)

where m = u · nθ A is the mass flux and the subscript f denotes the corresponding face of the control volume shown in 
Fig. 2(b).

The finite volume discretisation of the diffusion term in Eq. (5) for cut-cells is obtained as
¨

S

1

Re

∂u

∂n
dS =

∑

f

1

Re

∂u

∂n
(θ A)f + τw[(1 − θ)A]f, (9)

where ∂u
∂n is calculated by the finite difference approach from the present point P to the neighbouring point nb as ∂u

∂n =
unb−uP
�Pnb

which is the nearest point normal to the faces of the 3D and 2D cut cells in Fig. 2(b and c), and τw is the wall shear 
stress on the face of the control volume.

The finite volume discretisation of the pressure gradient in Eq. (5) for cut-cells is obtained as
˚

�

−∇pd� = −∇pθc�, (10)

and the pressure gradient is calculated as

∇p = (
pe − pw

�x
,

pn − ps

�y
,

pb − pr

�z
). (11)

The finite volume discretisation of the source term in Eq. (5) for cut-cells is obtained as
˚

�

uψd� = uψθc�. (12)

3.3. Cut-cell treatment for the continuity equation

When dealing with the continuity equation, the exact conservation of mass is enforced to the discretised level in cut-
cells. The continuity equation (Eq. (3)) can be recast into an integral formulation as below

¨

S

u ·ndS =
˚

�

1

V

dV solid

dt
d�. (13)

Using divergence theorem on the right-hand-side term, the above equation can be rewritten as
¨

S

u ·ndS = −
¨

CC

U B ·ndS, (14)

where U B is the moving velocity vector of the solid body and CC is the solid surface for the cut cell.
The discretised form for the left-hand-side (LHS) of Eq. (14) in the control volume for the cut cell shown in Fig. 2(b) can 

be obtained as
6
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¨

S

u ·ndS =
∑

f

uf ·n(θ A)f

= ueθe Ae − uwθw Aw + vnθn An − vsθs As + wbθb Ab − wrθr Ar.

(15)

The right-hand-side (RHS) of Eq. (14) is the integration along the solid surface CC . As the area of each face can be 
calculated as (1 − θ)A, so the RHS can be obtained as

−
¨

CC

U B ·ndS = −
∑

f

U B ·n[(1 − θ)A]f

= − U B(1 − θe)Ae + U B(1 − θw)Aw

− V B(1 − θn)An + V B(1 − θs)As

− W B(1 − θb)Ab + W B(1 − θr)Ar

=U Bθe Ae − U Bθw Aw + V Bθn An − V Bθs As + W Bθb Ab − W Bθr Ar.

(16)

When substitute Eq. (15) and Eq. (16) into Eq. (14), the final discretised continuity equation is

(ue − U B)θe Ae − (uw − U B)θw Aw + (vn − V B)θn An

− (vs − V B)θs As + (wb − W B)θb Ab − (wr − W B)θr Ar = 0
(17)

It can be seen that the cut-cell information for each control volume for their face areas is taken into account in the 
continuity equation to satisfy the divergence-free constraint at any time level. The volume change of the cut-cells (including 
fresh and dead cells) is also considered in a consistent way as used in the discretisation of the standard continuity equation, 
which is the key to reducing the pressure oscillation associated with the pressure correction equations as discussed in 
Section 3.4. It is worth noting that the final discretised continuity equation is equivalent to the partial cell treatment for the 
continuity equation used by Lin [36], although it is derived in a different way based on the finite difference method.

3.4. Navier-Stokes solver

The high-resolution scheme [37] is used for the advective flux. The second-order central difference scheme is used for 
diffusive flux, pressure gradient term and the pressure correction equations. It is worth noting that a consistent mass and 
momentum approach is used here for the staggered grid to discretise the nonlinear term, in which the mass flux mf =˜

S u ·ndS for the momentum control volume is calculated based on the interpolation of the mass flux already available 
for the continuity equation [37]. Substituting all the discretised terms into Eq. (5) and subtracting the continuity equation 
multiplied by un+1

P , leads to

au
P un+1

P =
∑

au
nbun+1

nb + bu
P + Af(pP − pnb), (18)

where au is the coefficient for the momentum equation, the subscripts P and nb = E,W,N,S,B,R denote the variables in 
the present and neighbouring cells (shown in Fig. 2), respectively, and bu

P is the source term contained un and high-order 
terms due to the high-resolution scheme [38].

The PISO algorithm [39] is employed in this study for the pressure-velocity coupling and it is used to calculate the 
corrected pressure twice. For a guessed pressure distribution p∗ , the discretised momentum equations can be solved to 
produce the fluid velocities u∗ , which satisfy the momentum equation (Eq. (18))

au
P u∗

f =
∑

au
nbu∗

nb + bu
P + Af(p∗

P − p∗
nb). (19)

To obtain the pressure correction, the updated fluid velocities are substituted into the discretised continuity equation 
(Eq. (17)) and the resulting pressure correction equation has the following form

ap
P p′

P =
∑

ap
nb p′

nb + b′
P, (20)

where ap is the coefficient for the continuity equation and the term b′
P, called the mass residual, is the left-hand side of the 

discretised continuity equation (Eq. (17)) evaluated in terms of the fluid velocities u∗ .
A second correction step is introduced in the PISO algorithm [39] as

ap
P p′′

P =
∑

ap
nb p′′

nb + b′′
P, (21)

where the coefficients have the same value in the first pressure correction equation shown in Eq. (20) and the source term 
has been changed for calculating the mass residual based on the value of first velocity correction u ′ .
7
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Table 2
Comparison between boundary-fitted simulations, immersed boundary method, and the present study for flow past a fixed square cylinder at Re = 100.

Square cylinder at Re = 100 Method C̄D C rms
L St

Sohankar et al. [41] boundary-fitted finite volume 1.477 0.156 0.146
Sen et al. [42] boundary-fitted finite element 1.5287 0.1928 0.1452
Ryu and Iaccarino [43] immersed boundary method 1.5642 0.1932 0.1506
Present study Cartesian cut-cell 1.5385 0.2053 0.14

In this study, the algebraic equations are solved by the strongly implicit procedure method or Bi-CGSTAB (Bi-Conjugate 
Gradients Stabilized) method [40]. After solving the first and second pressure corrections (Eq. (20) and Eq. (21)), the solu-
tions in a continuity control volume are updated as

p = p∗ + p′ + p′′,
uf = uf

∗ + u′
f + u′′

f ,
(22)

where

u′
f = Af

au
P
(p′

P − p′
nb),

u′′
f =

∑
au

nbu′
nb + Af(p′′

P − p′′
nb)

au
P

.

(23)

3.5. Dead and fresh cells

It is worth noting that there is no special treatment in the present cut-cell method for the dead or fresh cells in moving 
body problems, which need some kind of interpolation in other methods. In the present cut-cell method, both the continuity 
and momentum equations are solved for all the full and cut cells (θc > 0 shown in Fig. 1), which guarantee the conservation 
of mass and momentum locally as well as globally. For all the solid cells (θc = 0), the velocity is specified as the moving 
body velocity U B . For the fresh cells (θn

c = 0 and θn+1
c > 0 during two time levels n and n + 1 shown in Fig. 1), the new 

velocity for the fresh cells is obtained by solving the Navier–Stokes equations based on velocity value in the previous time 
level un = U B ; whereas for the dead cells, the new velocity is set to un+1 = U B as the fluid volume becomes zero.

4. Results and discussion

In this section, we assess the accuracy and performance of this new approach. First, a benchmark case for the flow past a 
fixed square cylinder is studied to demonstrate the cut-cell method to deal with sharp-interface problems. Then the source 
of the pressure oscillation is discussed and a convergence study is performed for a standard benchmark to investigate the 
effects of grid and time-step sizes. Furthermore, two 2D test cases for an in-line and transversely oscillating circular cylinder 
are considered, in which the results are compared with experimental measurements and other numerical methods. After 
that, a 3D oscillating sphere is simulated to validate the present cut-cell treatment for 3D moving bodies. Finally, a single 
free-falling sphere is considered and its trajectory is compared with the experimental data, demonstrating the capability of 
the new cut-cell method in dealing with fluid-structure interaction problems.

4.1. Flow past a fixed square cylinder

The flow past a fixed square cylinder is considered first using the sharp-interface cut-cell method. The simulation for flow 
at Re = 100 is carried out in a large square domain ([−20D, 40D] ×[−20D, 20D]) with the square cylinder located at (0, 0). 
A uniform velocity U is specified at the inlet whereas the zero gradient boundary condition is applied for other variables 
along the boundaries. A non-uniform Cartesian grid (300 ×264) is used to discretise the computational domain with uniform 
meshes h = �xmin = �ymin (h/D = 1/32) in the vicinity of the square cylinder. A constant time step �t = 0.001D/U is used 
in the simulation in order to minimise the temporal discretisation error.

An example of the snapshot for the streamlines and the corresponding vorticity field is shown in Fig. 3(a) and (b), 
respectively. It can be seen that a separation bubble is developed near the back face of the cylinder and the periodic 
vortex shedding is observed in the wake region. After the flow establishment, the time history of the drag C D and lift CL

coefficients is presented in Fig. 3(c). The fluctuation of the lift is larger than that of the drag and the power spectrum from 
the lift is shown in Fig. 3(d), which demonstrates a single dominant peak frequency for the vortex shedding. The predicted 
mean drag coefficient, lift fluctuation and the Strouhal number are presented in Table 2 and compared with other boundary-
fitted [41,42], immersed boundary [43] methods in the literature. A good agreement is obtained with the present method, 
demonstrating the capability of the cut-cell method to resolve sharp-interface geometries using a relatively coarse mesh.
8
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Fig. 3. Flow past a fixed square cylinder at Re = 100: (a) instantaneous streamlines; (b) instantaneous vorticity field; (c) time history of total drag C D and 
lift CL coefficients; and (d) the power spectrum of the lift signal in (c).

Fig. 4. Schematic of the computational setup for the oscillating circular cylinder problem, in which a circular cylinder of diameter D is oscillating horizon-
tally in a quiescent fluid in a domain Lx × L y with zero gradient boundary conditions for outer boundaries.

4.2. Source of pressure oscillation and convergence study: horizontally oscillating cylinder

In order to investigate the generation of spurious pressure oscillations in moving body problems, the test case proposed 
by Seo and Mittal [9] is considered here. Fig. 4 shows the computational setup, in which a circular cylinder of the diameter 
D with its centre located at (xc , yc), starts to oscillate sinusoidally in the x direction as
9
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Fig. 5. Time history of the normalised kinetic energy predicted by the present method with mass and momentum conservation. The kinetic energy is 
calculated for the fluid in the whole domain and normalised by 1

2 ρ AcylinderU 2
0 .

xc(t) = xc(0) + X0[1 − cos(2π f0t)],
uc(t) = U0 sin(2π f0t),

(24)

where U0 = 2π f0 X0 is the maximum velocity, X0 and T = 1/ f0 are the amplitude and period of oscillation, respectively. 
The Reynolds and Strouhal numbers are defined as Re = U0 D/ν and St = f0 D/U0. The total pressure drag on the body is 
calculated as C P D =

´
p(n·i)dS

0.5ρD3 f 2
0

.

We follow the same computational parameters used in [9], where X0 = 0.125D , Re = 78.5 and St = 1.27. The simulations 
are carried out in a square domain ([−2D, 2D] ×[−2D, 2D]) with the cylinder located at the centre. Zero gradient boundary 
conditions are applied for the velocity and pressure at the outer boundaries.

First, in order to investigate the effect of conservation for the mass and momentum, three different scenarios are consid-
ered, namely: no mass and no momentum conservation (the mass source/sink term ψ is ignored); mass conservation and 
no momentum conservation (the ψ term is considered, but the cut-cell discretisation is ignored in the momentum equa-
tion); and mass and momentum conservation (the present method). All the simulations are performed on a uniform 64 ×64
grid with a fixed time step �t/T = 0.002. In addition to the total pressure drag, the kinetic energy of the fluid in the whole 
domain is also taken into account, which is normalised by 1

2 ρ AcylinderU 2
0 . Fig. 5 shows an example of the kinetic energy 

predicted by the present method and it can be seen that periodic transformation of the kinetic energy is obtained from the 
simulation with good conservative property. In order to compare three different scenarios, the pressure drag coefficient and 
the kinetic energy for the last oscillation period are presented in Fig. 6. It can be observed that the flow field is not well 
captured when the mass conservation is not satisfied and there is a significant reduction for the momentum. When the 
mass conservation is enforced, there is little effect for the momentum conservation for the pressure drag, and the cut-cell 
discretisation for the Navier-Stokes equations produces better momentum conservation.

The simulations are also performed on a uniform 64 × 64 grid with a fixed time step �t/T = 0.002 using the cut-cell 
method with the original moving body algorithm [35] and present moving body technique. The time histories of the total 
fluid mass conservation of the system, the integration of source term ψ for the whole domain, the pressure drag coefficient 
C P D and the normalised kinetic energy are plotted in Fig. 7. It is worth noting that in order to gain insight into sources 
of spurious force oscillations, these quantities are shown at every time step in one oscillation period. The total fluid mass 
conservation error is very small (in the order of O (10−5)) for the coarse mesh used here. This is associated with the ge-
ometrical shape error to represent the circular shape of the cylinder using the cut-cell method and it will decrease when 
the mesh is refined. It can be seen that the present method significantly reduces the pressure oscillations although both 
methods predict a similar trend for the pressure drag. This is achieved by using the proposed new treatment for the solid 
volume change in the ψ term, which is much smoother and its fluctuation is at least one order smaller when compared to 
the original treatment. In addition, there is no oscillation for the kinetic energy and the present method has better conser-
vation for the momentum. It is worth mentioning that this improvement is obtained by satisfying the fluid volume/mass 
conservation more accurately through the conservative and consistent cut-cell method around the moving body, without 
any force modification or interpolation of the flow field as used in IBM. This indicates that the mass conservation property 
for the cut cells is the major resource of spurious pressure oscillations for moving body problems.

In order to investigate the effect of grid size, four different uniform mesh resolutions (642, 1282, 2562, and 5122 cells) 
are used in the simulation with a constant time step �t/T = 0.002, in which the cylinder diameter D is covered by 16, 32, 
64, and 128 cells, respectively. Fig. 8(a) shows the time histories of the pressure drag coefficient. It can be observed that 
smooth drag coefficients are obtained by the present method and there are only small oscillations when the cylinder passes 
the middle point where the velocity is maximum. The pressure oscillation is reduced when the mesh is refined, which 
is consistent with previous study [9]. This is mainly due to the decreased conservation error for the volume change term 
�V /�t for the cut cells when refining the mesh for the fixed time step.
10



Fig. 6. Time histories of the pressure drag coefficient C P D (left) and the normalised kinetic energy (right) for the horizontally oscillating circular cylinder in 
one period for the 64 × 64 mesh: comparison between different treatment for the conservation of mass and momentum.

In order to investigate the effect of time-step size, four different time steps with �t/T = 0.002, 0.004, 0.008, 0.016
(C F L = 0.025, 0.05, 0.1, 0.2) are used for the grid (64 × 64 cells). Fig. 8(b) shows the time histories of the pressure drag 
coefficient plotted for every time step during the simulations. It can be seen that much smoother pressure variation is 
obtained for larger time-step size, which effectively decreases the conservation error when calculating the term �V /�t .

4.3. In-line oscillating circular cylinder in a fluid at rest

After obtaining reduced pressure oscillations, we start to validate the kinematics of the flow field for an in-line oscillating 
cylinder, which is very important in ocean and offshore engineering applications. The LDA experiment performed by [44]
is studied here, which has been widely used as a benchmark case for other numerical methods [14,44]. The computational 
setup is similar to the previous case shown in Fig. 4 and details can be found in [44], where a cylinder is oscillating 
(xc(t) = xc(0) − X0 sin(2π f0t)) in a fluid at rest with a Reynolds number Re = 100 and a Keulegan-Carpenter number 
K C = 5, respectively. A larger computational domain ([−30D, 30D] × [−20D, 20D]) is used in this case, with zero gradient 
boundary conditions being applied at outer boundaries. A non-uniform grid 1200 × 800 is used for spatial discretisation 
with uniform meshes h = �xmin = �ymin (h/D = 1/128) in the vicinity of the cylinder. The CFL number is kept as constant 
0.5 in the simulation.

It was shown in [44] that there is periodic vortex shedding in the vicinity of the oscillating cylinder. In order to make 
some quantitative comparisons with the experimental measurements, Fig. 9 shows the computed and measured velocity 
profiles (u and v) for three different phases during one oscillation period at four different streamwise locations x. The 
streamwise velocity u has a similar shape across the centre in the x axis while the vertical velocity v has a different sign 
with a similar profile. It can be seen that a good agreement is obtained between the simulation and experiment, which is 
similar to the body-fitted [44] and embedded-boundary [14] approaches.
Z. Xie, P. Lin and T. Stoesser Journal of Computational Physics 459 (2022) 111124
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Fig. 7. Time histories of the total fluid mass conservation of the system, the integration of source term ψ for the whole domain, the pressure drag coefficient 
C P D and the normalised kinetic energy for the horizontally oscillating circular cylinder at every time steps in one period for the 64 × 64 mesh: comparison 
between the original moving body algorithm [35] and the present moving body algorithm (Eq. (11)). The plot for the source term predicted by the present 
method is increased by 10 times for comparison.
12



Fig. 8. Time histories of the pressure drag coefficient C P D for the horizontally oscillating circular cylinder with X0 = 0.125D, Re = 78.5, St = 1.27. (a) The 
effect of mesh size with a fixed time step �t/T = 0.002 and (b) the effect of time step on a fixed mesh resolution D/�x = 16.

Fig. 10 shows the computed evolution of drag coefficient C D , which includes the in-line force acting on the cylinder due 
to pressure and shear stress, and its comparison with the numerical result obtained from the boundary-fitted simulation 
[44]. A smooth force is predicted by the present method and it is in good agreement with the boundary-fitted result. This 
test demonstrates that the improved Cartesian cut-cell method not only reduces the spurious pressure oscillations, but can 
also predict accurately the flow field around the moving geometries.

4.4. Flow past a transversely oscillating circular cylinder

It is more complicated during fluid-structure interaction when the body moves in an established flow field. In the present 
study, the flow over a transversely oscillating cylinder is considered, which has been used as a benchmark case for different 
numerical methods, such as boundary-fitted [1,2], immersed boundary [11,13,14,45], and Cartesian cut-cell [23] methods. 
The computational setup is shown in Fig. 11, where a cylinder is oscillating vertically (yc(t) = yc(0) − Y0 sin(2π fet)) in 
a fluid with a free-stream velocity U∞ . The same parameters in previous studies are used here, in which the Reynolds 
number Re = U∞D/ν = 185, the oscillation amplitude Y0 = 0.2D , and the excitation frequency fe = 0.8 f0, where f0 is the 
natural shedding frequency. The size of the computational domain is [−20D, 40D] × [−20D, 20D], with inflow velocity U∞
at the inlet, zero gradient boundary condition at the outlet, and free slip boundary conditions at the top and bottom of the 
domain. Two non-uniform grids (600 × 528 and 1200 × 1056) are used for the spatial discretisation with uniform meshes 
h = �xmin = �ymin (h/D = 1/64, 1/128) in the vicinity of the cylinder. Two constant CFL numbers (0.2 and 0.5) are used in 
the simulation.

Before considering the moving cylinder, we first study the flow over a stationary cylinder at the same Reynolds number. 
The time history of the computed drag (C D ) and lift (CL ) coefficients with the mesh resolution h/D = 1/64 and C F L =
0.5 is shown in Fig. 12, demonstrating the present method predicts smooth force acting on the cylinder and periodic 
vortex shedding can be observed for the flow. The time-averaged drag coefficient, the RMS-averaged lift coefficient, and the 
resulting Strouhal number are presented in Table 3. The results reported previously in the literature are also included for 
comparison, including those obtained from the experiment, body-fitted, different kinds of immersed boundary methods. For 
completeness, the sizes of the computational domain and mesh resolution are also summarised in Table 3. It can be seen 
that the present results obtained from the two sets of meshes and CFL numbers are in good agreement with those results 
obtained from previous numerical methods and experimentally measured values, which demonstrate the accuracy of the 
present cut-cell method to simulate the vortex shedding for flow over a circular cylinder.
Z. Xie, P. Lin and T. Stoesser Journal of Computational Physics 459 (2022) 111124
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Fig. 9. Velocity profiles for in-line oscillating cylinder in a fluid at rest with Re = 100 and K C = 5 at (a) 180◦; (b) 210◦; (c) 330◦ . Lines are the present 
results and symbols are the experimental data [44] at four different locations: x = −0.6D (red); x = 0.0D (black); x = 0.6D (blue); x = 1.2D (green).

Fig. 10. Time history of the total drag coefficient C D for in-line oscillating cylinder in a fluid at rest with Re = 100 and K C = 5. Solid line is the present 
result and circles are numerical results obtained by the boundary-fitted simulation [44].
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Fig. 11. Schematic of the computational setup for the flow past a transversely oscillating cylinder, in which a circular cylinder of diameter D is oscillating 
vertically in fluid with the free-stream velocity U∞ in a domain Lx × L y with zero gradient boundary condition for the outlet and free slip boundary 
conditions for both sides.

Fig. 12. Computed temporal variation of drag and lift coefficients for the flow over a stationary cylinder at Re = 185 with the mesh resolution h/D = 1/64
and C F L = 0.5.

Table 3
Comparison between experiment, boundary-fitted simulations, immersed boundary methods, and the present study for flow past a fixed cylinder at Re =
185.

Fixed cylinder at Re = 185 Method D/h C̄D C rms
L St

Lu and Dalton [1] experiment − 1.28 − 0.19
Lu and Dalton [1] boundary-fitted − 1.31 0.422 0.195
Guilmineau and Queutey [2] boundary-fitted 100 1.287 0.443 0.195
Yang and Balaras [14] IBM-sharp interface 200 1.366 0.461 0.197
Abdol Azis et al. [45] IBM-diffuse interface 60 1.362 − 0.193
Present study C F L = 0.5 cut-cell 64 1.267 0.440 0.195
Present study C F L = 0.2 cut-cell 64 1.319 0.436 0.195
Present study C F L = 0.5 cut-cell 128 1.335 0.451 0.195
Present study C F L = 0.2 cut-cell 128 1.335 0.448 0.195
15



Z. Xie, P. Lin and T. Stoesser Journal of Computational Physics 459 (2022) 111124
Fig. 13. The instantaneous vorticity fields in the wake of the flow over a transversely oscillating cylinder at Re = 185 with the mesh resolution h/D = 1/64
and C F L = 0.5. One oscillation period T is shown here with 1/8T interval between each snapshot.

Fig. 13 shows some snapshots of the vorticity contours for one oscillation period with 1/8T interval using the grid h/D =
1/64 and C F L = 0.5. Clockwise and anti-clockwise vortices are generated from the top and the bottom of the cylinder, 
respectively. The size and location of the vortex are similar for snapshots with T /2 interval, but with a different sign. 
It can be seen that periodic vortex shedding is observed from the cylinder and synchronises with the cylinder’s forced 
oscillatory motion. The 2S mode can be seen in the wake of the cylinder, which is often observed in vortex-induced vibration 
problems.

Fig. 14 shows the variation of the drag and lift coefficients as a function of the cylinder’s vertical position. It can be 
seen that relatively smooth hydrodynamic forces are obtained by the present cut-cell method and the amplitude of the 
oscillation decreases further when the mesh is refined. It is worth mentioning that in the immersed boundary method, 
large force oscillation is often observed when using the discrete delta function, where the spurious oscillation decreases 
when using the smooth delta function [11,13,45]. In the Cartesian cut-cell method, there is also spurious oscillation when 
using the cell-merging technique [23] and [23] proposed a weighting function together with the cut-cell method to reduce 
the spurious oscillation, which effectively smoothes the discretisation operator. However in the present method, there is no 
smoothing function used in the discretisation, and the reduced spurious oscillation is achieved by satisfying the continuity 
equation more accurately through the conservative and consistent cut-cell approach.

In order to make a quantitative validation, Table 4 shows the time-averaged drag coefficient, the RMS-averaged drag and 
lift coefficients, and the results reported previously in the literature, including those obtained from the body-fitted, different 
kinds of immersed boundary methods and Cartesian cut-cell methods. It can be seen that the present results obtained from 
16
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Fig. 14. Time-periodic variation of drag (C D ) and lift (CL ) coefficients as a function of the cylinder’s vertical position for the flow over a transversely 
oscillating cylinder at Re = 185 using (a) 600 × 528 and (b) 1200 × 1056 grids with C F L = 0.5.

Table 4
Comparison between boundary-fitted simulations, immersed boundary methods, cut-cell method and the present study for flow past a transversely oscil-
lating cylinder at Re = 185.

Oscillating at Re = 185 Method D/h C̄D C rms
D C rms

L

Lu and Dalton [1] boundary-fitted − 1.25 − 0.18
Guilmineau and Queutey [2] boundary-fitted 100 1.195 0.036 0.08
Yang and Balaras [14] IBM-sharp interface 200 1.21 0.040 0.08
Yang et al. [13] IBM-sharp interface 100 1.281 0.042 0.076
Uhlmann [11] IBM-diffuse interface 38.4 1.380 0.063 0.176
Abdol Azis et al. [45] IBM-diffuse interface 60 1.260 0.059 0.0716
Schneiders et al. [23] cut-cell (cell-merging) 50 1.259 0.040 0.059
Schneiders et al. [23] cut-cell (weighting function) 50 1.279 0.042 0.082
Present study cut-cell 64 1.234 0.043 0.180
Present study cut-cell 128 1.246 0.047 0.190

the two sets of meshes are in good agreement with those results obtained from previous numerical methods, especially 
with the boundary-fitted simulation [1], which demonstrate the accuracy of the present cut-cell method to simulate the 
vortex-induced vibration problems.

4.5. An in-line oscillating sphere

After successfully simulating several 2D moving geometries, a canonical 3D problem for an oscillating sphere in the x
direction [9,18] is considered here. The relevant parameters are: the oscillation amplitude X0 = 0.125D , Re = 78.54 and 
St = 1.2732. The computational domain size is (4D)3 and is discretised by a 643 uniform grid. Zero gradient boundary 
condition is applied in the x direction whereas no-slip boundary conditions are employed at all other boundaries. In the 
present cut-cell simulation, the sphere is resolved by 16 grid points (h/D = 1/16) and C F L = 0.125 is used in the simula-
tion.
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Fig. 15. In-line oscillating sphere at Re = 78.54 and St = 1.2732. (a-d) instantaneous velocity vectors together with streamlines coloured by the pressure; 
(e) time history of the pressure drag coefficient plotted for every time step.

Fig. 15(a-d) shows the snapshots with T /4 time interval for the instantaneous velocity vectors together with streamlines 
coloured by the pressure. It can be seen that maximum velocity is obtained when the sphere moves across the centre at 
Fig. 15(a) and (c). Complicated flow structure can be observed when the sphere achieves its maximum oscillation position 
at Fig. 15(b) and (d), just before changing its moving direction.

Fig. 15(e) shows the time history of the pressure drag coefficient, at every time step during one oscillation period. 
Although relatively coarse mesh resolution is used to resolve the sphere, a very smooth drag coefficient is obtained, demon-
strating the capability of the proposed sharp-interface cut-cell method in reducing spurious pressure oscillations in 3D.
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Fig. 16. A single free-falling sphere in a fluid at rest with density ratio 2.56 and Re = 41: (a) snapshots for the contours of the vertical velocity during 
falling process; (b) predicted settling velocity compared with the experimental measurement [46].

4.6. A single free-falling sphere

In the final example, we consider a fluid-structure interaction problem for the motion of a solid sphere falling under 
the gravity in a fluid at rest, which has been studied previously by experimental [46] and numerical [11,47] approaches. 
The relevant parameters are chosen to match case 1 in the experiment [46], in which the density ratio between the sphere 
and the fluid is 2.56, Reynolds number and the Froude number based on the terminal velocity and the diameter of the 
sphere are Re = 41 and F r = 1.06. The computational domain size is [0, 8D] × [0, 60D] × [0, 8D] and is discretised by a 
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128 × 960 × 128 uniform grid. Zero gradient boundary condition is applied at the top and bottom of the domain in the 
y direction whereas free slip boundary conditions are employed at all other boundaries. The sphere is resolved by 16 grid 
points (h/D = 1/16) and the initial position for the sphere is at (4D, 55D, 4D).

Fig. 16(a) shows some snapshots of the contours of the vertical velocity in a 2D plane during the initial stage of the 
free-falling sphere. It can be seen that the flow field is almost symmetric along the y axis and there is no axisymmetric 
vortex shedding due to the low Reynolds number. The sphere pushes the fluid downwards and also drags the fluid on its 
top to move down. There is a recirculation region on the side of the sphere, where the fluid is moving upwards. The wake 
region becomes longer until the sphere achieves its terminating velocity. In order the make a quantitative comparison, the 
predicted time history of the settling velocity is compared with the experimental data [46], where the velocity and time 
are normalised by 

√
g D and 

√
(D/g), respectively. A very good agreement is obtained for the present cut-cell method, 

demonstrating its capability in accurately predicting the hydrodynamic forces and movement in fluid-structure interaction 
problems.

5. Conclusions

A novel three-dimensional Cartesian cut-cell method has been developed for the simulation of moving complex geome-
tries. Strict conservation of mass and momentum is enforced through the cut-cell method, together with a consistent mass 
and momentum flux. In contrary to existing cut-cell methods, an implicit time stepping scheme is employed, which prevents 
numerical instability without any additional small-cell treatment.

In the present study, the source of spurious pressure oscillations in the Cartesian cut-cell framework is investigated 
further. Local mass conservation errors, which are associated with (i) dead and fresh cells and (ii) geometrical conservation 
in the vicinity of complex geometries, are properly addressed by the present cut-cell method. In addition, other sources for 
local mass conservation errors are also noticed as: (iii) representation of curved geometries and (v) temporal discontinuity 
of the solid volume change. Thus, a new moving body algorithm is proposed for the cut-cell method, which effectively 
considers the motion of moving geometries and enforces exact mass conservation in the discretised level for cut-cells.

The present cut-cell method is validated through several popular benchmark cases in both 2D and 3D, in which the 
predicted results are compared with experimental measurements, boundary-fitted, various immersed boundary methods, 
and other cut-cell methods, with a close agreement being obtained with data reported in the literature. The temporal 
variations of pressure drag coefficients are shown for every time step in the simulations and it can be seen that pressure 
oscillations are significantly reduced by the cut-cell method, without using any smoothing technique. The improvement 
for local mass and momentum conservation enables a better understanding of fluid-structure interaction and flow-induced 
vibration problems.
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