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a b s t r a c t 

A multiphase flow numerical approach for performing large-eddy simulations of three-dimensional (3D) 

wave-structure interaction is presented in this study. The approach combines a volume-of-fluid method 

to capture the air-water interface and a Cartesian cut-cell method to deal with complex geometries. The 

filtered Navier–Stokes equations are discretised by the finite volume method with the PISO algorithm 

for velocity-pressure coupling and the dynamic Smagorinsky subgrid-scale model is used to compute 

the unresolved (subgrid) scales of turbulence. The versatility and robustness of the presented numeri- 

cal approach are illustrated by applying it to solve various three-dimensional wave-structure interaction 

problems featuring complex geometries, such as a 3D travelling wave in a closed channel, a 3D solitary 

wave interacting with a vertical circular cylinder, a 3D solitary wave interacting with a horizontal thin 

plate, and a 3D focusing wave impacting on an FPSO-like structure. For all cases, convincing agreement 

between the numerical predictions and the corresponding experimental data and/or analytical or numer- 

ical solutions is obtained. In addition, for all cases, water surface profiles and turbulent vortical structures 

are presented and discussed. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

It is believed that extreme waves will become more common 

n coastal and offshore region due to climate change [1] . Detailed 

ngineering understanding of wave-structure interaction (WSI) is 

 key aspect in the safe and cost-effective design of coastal and 

ffshore structures, and marine renewable devices. Reliable nu- 

erical tools are required to predict WSI and assess the relia- 

ility and survivability of these structures due to extreme wave 

oads. However, not too much progress has been made to date in 

erms of developing and validating tools that can predict accurately 

hree-dimensional waves interacting with complex structures, ow- 

ng to nonlinearities of waves and the geometrical complexity of 

mmersed structures. Further challenges arise in terms of the tur- 

ulence of the flow and breaking of waves before or during wave 

mpact, with subsequent periodic air entrainment and jet-splash 

p [2] . 
∗ Corresponding author. 
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In order to roughly predict hydrodynamic loads on structures, 

mpirical or semi-empirical methods such as the Morison equation 

3] or the Froude-Krylov method [4] have been used in engineer- 

ng applications. However, these methods ignore the effect of the 

tructure and are only applicable to very simple problems. 

There are a variety of mathematical models for water waves, 

uch as the mild slope equation [5] , shallow water equation [6] , 

nd Boussinesq equation [7,8] . In order to obtain the kinemat- 

cs and dynamics of water waves, depth-resolved methods should 

e used. One of these is the fully nonlinear potential flow model 

ased on Laplace’s equation with inviscid and irrotational assump- 

ions [9–11] . However, it is challenged when considering wave im- 

act on structures or for wave breaking, especially when there is 

plash-up and/or air entrainment. 

Continuous progression of Computational Fluid Dynamics (CFD) 

ethods and accompanied by constant increase in computer 

ower has facilitated solving the Navier-Stokes equations (NSE) 

ncluding free surface calculations for wave-structure interaction 

12] . Various methods have evolved solving the NSE on fixed grids 

ogether with the volume-of-fluid method [13–15] , the level set 

ethod [16,17] , the particle in cell method [18] , the two-fluid 

ethod [19] , diffuse interface method [20] and the non-hydrostatic 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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S  
odel with height function method [21–23] . Alternatively, meth- 

ds to solve the NSE based on adaptive grids have been devel- 

ped with the aim to reduce the computational effort without 

carifying accuracy [24,25] . Many researchers have employed the 

pen source code OpenFOAM [23,26–32] or commercial codes such 

s CFX [33] and FLUENT [34–36] to study wave-structure interac- 

ion. Meshless methods, such as the smoothed particle hydrody- 

amics (SPH) method [37–40] , Moving Particle Semi-implicit (MPS) 

ethod [41–43] , and the meshless local Petrov-Galerkin (MLPG-R) 

ethod [44,45] also exist and are becoming increasingly popular. 

ecently, hybrid models have been developed, coupling the poten- 

ial flow model with a NSE-based method, where the NSE-based 

ethod serves as a near-field model near structures and the po- 

ential flow model computes the far field [46–48] . Hybrid mod- 

ls are economic (using fewer computational resources than using 

ure NSE-based models) and can achieve sufficient accuracy. An- 

ther hybrid model, coupling incompressible and compressible NSE 

olvers has also been developed in the framework of OpenFOAM 

28] . 

In order to immerse complex geometries for wave-structure in- 

eraction simulations, overlapping grids, boundary-fitted grids, and 

nstructured grids can be used. These methods provide great flex- 

bility conforming with complex stationary or moving boundaries. 

owever, the programming of these methods can be complicated 

nd generating such grids is usually very cumbersome [49] . Carte- 

ian grid methods, which can simulate flow with complex geome- 

ries on Cartesian grids, avoid these problems, such as the im- 

ersed boundary method [49] and the Cartesian cut cell method 

50] . The primary advantage of Cartesian grids is that only lit- 

le modification of the NSE solver is needed to account for im- 

ersed complex geometries. Examples are the partial cell treat- 

ent [51,52] , immersed boundary method with ghost cell [16] , a 

irtual boundary force [14] , direct forcing immersed boundaries 

17] , and Cartesian cut-cell method [53,54] . Solving the NSE on 

xed Cartesian grids has also the advantage of simple grid gen- 

ration and allows simulating moving boundaries thereby avoiding 

eavily deforming grids [19,51,55,56] . 

Most wave-structure interaction in engineering applications are 

urbulent and therefore the effect of turbulence on the mean and 

nstantaneous flows requires to be accounted for unless all scales 

f turbulence are resolved, which is, for practical applications not 

easible due to the exorbitant computational demands of the so- 

alled Direct Numerical Simulation (DNS). Therefore, in many pre- 

ious studies, the effects of turbulence have either been neglected 

r the Reynolds-averaged Navier–Stokes (RANS) equations have 

een solved, in which all of the unsteadiness due to turbulence 

s averaged out and the effects of turbulence are modelled by a 

o-called turbulence model. Thus, RANS models cannot provide in- 

tantaneous turbulent flow characteristics. The increase in com- 

uter power has led to the development of more powerful but 

ore computationally demanding methods, such as the method 

f large-eddy simulation (LES) [57–59] , in which large-scale turbu- 

ence is resolved while the effect of small scale turbulence on the 

arge scales is modelled. LES can be employed for practical prob- 

ems where the Reynolds number is high and the computational 

omain is large. Mo et al. [60] performed single-phase LES to study 

ave impact on a slender cylinder. To date, two-phase flow LES for 

hree-dimensional (3D) wave-structure interaction is rather limited 

55,61] . 

The objective of this paper is therefore, to refine and validate a 

D two-phase flow code (Xdolphin3D) [15,62] for large-eddy sim- 

lations of 3D wave-structure interaction using a Cartesian cut-cell 

ethod [56] , with the aim to compute accurately various quanti- 

ies for wave-structure interaction, such as wave elevations, pres- 

ure fields, wave loads, water surface profiles, and turbulent vorti- 

al structures at high spatial and temporal resolution. To the best 
2 
f the authors’ knowledge, the combination of a volume-of-fluid 

ethod for two-phase flows, Cartesian cut-cell method to deal 

ith complex geometries, and large-eddy simulation, has not been 

eported in the literature for 3D wave-structure interaction prob- 

ems. Four different 3D test cases are considered in the present 

tudy and simulation results are compared with available exper- 

mental measurements and/or results of other numerical simula- 

ions. 

The organisation of this paper is as follows: The description of 

he mathematical model for the two-phase flow and the numerical 

ethod are presented in Section 2 . The versatility, robustness and 

ccuracy of the present two-phase flow model is demonstrated by 

pplying it to various 3D wave-structure interaction problems in- 

olving complex geometries in Section 3 . Finally, the paper ends 

ith conclusions in Section 4 . 

. Numerical methods 

.1. Governing equations and basic solver 

The large-eddy simulation (LES) approach [59] is adopted in 

his study, for which the large-scale turbulence is resolved and a 

ubgrid-scale model is employed to compute the unresolved scales 

f turbulence. The governing equations used for incompressible 

wo-phase flow are based on the spatially filtered Navier–Stokes 

quations, given as: 

 · ū = 0 , (1) 

∂(ρū ) 

∂t 
+ ∇ · (ρū � ū ) = −∇ ̄p + ∇ · [ μ( ∇ ̄u + ∇ 

T 
ū )] 

+ ρg + ∇ τsgs , (2) 

here the overbar ·̄ denotes the spatial filtering over the grid in 

artesian coordinates ( x, y, z ), ū = ( ̄u , ̄v , w̄ ) is the filtered velocity

ector and p̄ is the filtered pressure. t is the time, g is the gravi-

ational acceleration vector, ρ and μ are the density and dynamic 

iscosity of the fluid. 

The term τsgs = ρ( ̄u ̄u − u u ) is the subgrid-scale (SGS) stress 

ensor and the anisotropic part of the SGS term is modelled by an 

ddy-viscosity model of the form [63] : 

sgs − 1 

3 

trace ( τsgs ) I = 2 μt ̄S , (3) 

here I is the unit tensor and S̄ is the strain rate tensor of the 

esolved field. μt is the turbulent eddy viscosity defined as: 

t = ρC d �̄
2 
∣∣S̄ ∣∣, and 

∣∣S̄ ∣∣ = 

√ 

2 ̄S ̄S , (4) 

ith the cut-off length scale �̄ = ( �x �y �z ) 1 / 3 and the coefficient 

 d is calculated by the dynamic SGS model [64] in the present 

tudy. The symbol for spatial filtering ‘ −’ is dropped hereinafter for 

implicity. 

.1.1. Finite volume discretisation and computational grid 

The finite volume method is conservative and can deal with 

omplex geometries, thus it is especially suitable for simulat- 

ng two-phase flows and their interaction with structures (see 

ig. 1 (a)) and is therefore adopted. A staggered Cartesian grid is 

sed to discretise the governing equations, which has the advan- 

age of strong coupling between the velocity and the pressure. 

ig. 1 (b) shows a typical variable arrangement in a 3D Carte- 

ian grid, in which the velocities are located in the centre of the 

ace of the control volume, and the pressure, as well as all other 

calar variables are stored in the cell centre. The air-water inter- 

ace is captured by the volume-of-fluid method to be introduced in 

ection 2.2 . Complex geometries as shown for a 2D plane ( Fig. 1 (c))
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Fig. 1. Schematic of a two-phase flow for a three-dimensional wave-structure interaction problem: (a) 3D computational setup with a 2D plane shown for the Cartesian grid 

(dash line frame: the selected 2D mesh shown in (c)); (b) Variables used for the control volume ( i, j, k ) in a 3D staggered grid. Velocities u ( i, j, k ), v ( i, j, k ), and w ( i, j, k ) are 

stored in the centre of the six faces of the control volume. Pressure and other variables ϕ( i, j, k ) are stored in the centre of the control volume; (c) The selected 2D plane 

from (a) shows the air-water interface (blue line) and the solid boundary (black line). Blue dots represent fluid nodes whereas red dots represent solid nodes. White cells 

are entirely fluid, yellow cells are entirely solid and green cells are cut-cells around the solid boundary; (d) Example of a 3D cut-cell with the yellow shaded area being 

solid. The volume of the control volume is � and the area of each face (white region) is A . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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nd a 3D control volume ( Fig. 1 (d)) are handled with the Cartesian

ut-cell method to be introduced in Section 2.3 . 

.1.2. Temporal discretisation 

A backward difference scheme is used for the time derivative, 

hich leads to an implicit scheme for the Navier–Stokes equations, 

uch as the first-order backward Euler scheme: 
 ∫ ∫ 

�

∂ 

∂t 
(ρu ) d� = 

ρn +1 
c u 

n +1 − ρn 
c u 

n 

�t 
�, (5) 

r the second-order backward Euler scheme: 
 ∫ ∫ 

�

∂ 

∂t 
(ρu ) d� = 

3 ρn +1 
c u 

n +1 − 4 ρn 
c u 

n + ρn −1 
c u 

n −1 

2�t 
�, (6) 

here �t is the time step and superscripts n + 1 , n and n − 1 rep-

esent current, previous one and previous two time step, respec- 

ively. The subscript c indicates the current control volume and 

is the volume of the control volume of the fluid. The implicit 

cheme has the advantage of the solution being unconditionally 

table and thus can prevent instabilities in small cut-cells as is dis- 

ussed in Section 2.3 . 

.1.3. Spatial discretisation 

The finite volume discretisation of the advection term is ob- 

ained as: 
3 
S 

(ρu · n ) u d S = 

∑ 

f 

[ (ρu · n ) u A ] f 

= 

∑ 

f 

(ρu · n A ) f u f 

= 

∑ 

f 

m f u f , (7) 

here the subscript f denotes the corresponding face of the control 

olume, A is the area of the face available for the fluid and m =
u · n A is the mass flux through the face. 

It is worth mentioning that it is attractive to use a consis- 

ent and conservative form for the momentum advection method 

62,65,66] . In this study, the m f is obtained from the interpola- 

ion of the mass fluxes, which is already available at the faces of 

he continuity control volumes. u f is approximated with the high- 

esolution scheme with flux limiting and more details can be found 

n [62] . 

The finite volume discretisation of the diffusion term is ob- 

ained as: 

 ∫ 
S 

(μ + μt ) 
∂ u 

∂n 

d S = 

∑ 

f 

(μ + μt ) f 
∂ u 

∂n 

A f + τw 

[ A solid ] f , (8) 

here the viscosity on the face is obtained by the harmonic mean, 
∂ u 
∂n 

is calculated by the finite difference approach, τw 

is the shear 
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tress of the wall on the face of the control volume, and A solid is

he area occupied by the solid. 

The finite volume discretisation of the source term is obtained 

s: 
 ∫ ∫ 

�
(−∇ p + ρg )d� = (−∇ p + ρc g )�, (9) 

here the value in the centre of the control volume ( ρc ) is ob-

ained by the volume averaging of two values on the face of the 

ontrol volume and the pressure gradient is calculated from two 

eighbouring control volumes. 

Substituting all the approximated derivatives into Eq. (2) and 

ubtracting the continuity equation ∂ρ/ ∂t + ∇ · (ρu ) = 0 multi- 

lied by u 

n +1 
P 

, leads to 

 

u 
P u 

n +1 
P = 

∑ 

a u nb u 

n +1 
nb 

+ b u P + A f (p P − p nb ) , (10) 

here a u is the coefficient, b u 
P 

is the source term, the subscripts P 

nd nb denote the variables in the present and neighbouring con- 

rol volume, respectively. 

.1.4. Pressure-velocity coupling 

The PISO algorithm [67] is employed for pressure-velocity cou- 

ling which calculates the pressure correction term twice. This 

erm is used to update pressure and velocities at the end of each 

ime step to satisfy the continuity equation. A brief summary is 

hown below. 

For a guessed pressure p ∗, the discretised momentum equations 

an be solved to produce fluid velocities u 

∗, which satisfy 

 

u 
P u 

∗
f = 

∑ 

a u nb u 

∗
nb + b u P + A f (p ∗P − p ∗nb ) . (11) 

To obtain the pressure correction, the updated fluid velocities 

re substituted into the discretised continuity equation Eq. (1) and 

he resulting pressure correction equation has the following form: 

 

p 
P 

p ′ P = 

∑ 

a p 
nb 

p ′ nb + b ′ P , (12) 

here the term b ′ P , is the mass residual from the predicted veloc- 

ties, p ′ 
P 

is the pressure correction and a 
p 
P , nb 

are the matrix coeffi- 

ients for this equation. 

In the PISO algorithm [67] , a second correction step is intro- 

uced as: 

 

p 
P 

p ′′ P = 

∑ 

a p 
nb 

p ′′ nb + b ′′ P , (13) 

here the coefficients are the same as in the first pressure cor- 

ection equation shown in Eq. (12) , however the mass residual is 

ased on the value of first velocity correction u 

′ . 
After solving the first and second pressure correction equations, 

he quantities of the current time step are updated as: 

p = p ∗ + p ′ + p ′′ , 
 f = u 

∗
f + u 

′ 
f + u 

′′ 
f , (14) 

here 

u 

′ 
f = 

A f 

a u 
P 

(p ′ P − p ′ nb ) , 

 

′′ 
f = 

∑ 

a u 
nb 

u 

′ 
nb 

+ A f (p ′′ P − p ′′ 
nb 

) 

a u 
P 

. (15) 

.2. Interface capturing method 

The volume-of-fluid method is employed here to capture the 

ir-water interface in the two-phase flow solver during the simu- 

ation. F is the volume fraction defined as: 

 = 

{
1 , if a control volume contains water only; 
0 , if a control volume contains air only. 

(16) 
4 
The air-water interface is then in cells where 0 < F < 1. A par-

icle on the surface stays on the surface and the volume fraction F 

as a zero material derivative: 

d F 

d t 
= 

∂F 

∂t 
+ u · ∇ F = 0 . (17) 

After interface capturing for the volume fraction field, the mo- 

entum equation ( Eq. (2) ) is closed with the constitutive relations 

or the density and dynamic viscosity of the fluid as given by: 

= F ρw + (1 − F ) ρa , (18) 

= F μw + (1 − F ) μa , (19) 

here the superscripts ‘w’ and ‘a’ denote water or air, respectively. 

A key requirement for simulating two-phase flows is to 

rack/capture the shape of the interface. Numerous methods have 

een proposed and used for the simulation of free-surface/two- 

hase flows. However, the VOF method for capturing the inter- 

ace is one of the most popular approaches due to its advantages: 

ass conservation, computational efficiency and easy implemen- 

ation. From a general point of view, there are two classes of al- 

orithms to solve the F transport equation ( Eq. (17) ): algebraic and 

eometric computation [68] . Considering the efficiency in algebraic 

omputation, the high resolution VOF scheme Compressive Inter- 

ace Capturing Scheme for Arbitrary Meshes (CICSAM) is employed 

o capture the air-water interface for two-phase flows. CICSAM is a 

igh resolution scheme based on the normalised variable diagram 

sed by Leonard [69] . It contains two high resolution schemes to 

alculate the volume fraction F on the face of the control volume 

nd the weighting factor is based on the angle between the inter- 

ace and the direction of motion. Refer to [15,70] for more details. 

.3. Cartesian cut-cell method 

The cut-cell method proposed by Xie and Stoesser [56] is em- 

loyed here. The geometry of the solid is described by a level set 

unction LS ( x, y, z ), in which the boundary of the solid is repre-

ented by LS(x, y, z) = 0 while the fluid domain has the value of

S ( x, y, z ) > 0 and the solid domain is LS ( x, y, z ) < 0. The cut-cell

nterface between the fluid and solid is calculated by a piecewise 

inear interface, which is a straight-line in 2D and a plane in 3D 

as shown in Fig. 1 ). For each 3D Cartesian grid cell, the area of

ach side surface A and the total volume available for the fluid �

s calculated. A θ function is defined here, the value of which is 1 

or a point accessible to fluid and 0 for a point inside a solid. The

verage of this function over a control volume or cell face is the 

raction of the volume or area available to the fluid in a standard 

ontrol volume. 

Regarding numerical implementation, no modification of the 

quations in Section 2.1 are required for full fluid cells. In cut cells 

round the structures, the mass flux has to be modified by the θ
unction on the boundary. If A f = 0 (such as the cells in the left of

he cylinder in Fig. 1 (c)), there is no mass flux through the east 

ace and the advective flux is obtained as m f = 0 . In addition, the

iffusive flux as well as the cell volume have to be modified in cut 

ells. The details for the Cartesian cut-cell method can be found 

n [56] . It is worth mentioning that an implicit scheme for time 

ntegration is employed to prevent numerical instabilities in small 

ut cells. The cut-cell method has also been validated for some LES 

tudies for turbulent open-channel flows [71–73] . 

.4. Initial and boundary conditions 

Initial and boundary conditions are as follows. Water waves are 

enerated at the inlet based on wave theories [74] and velocities 

ver time are prescribed as Dirichlet boundary condition. The time 
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Fig. 2. Schematic of the 3D travelling solitary wave in a closed channel. 
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istory of the water surface elevation is prescribed in terms of 

he volume fraction at the inlet, i.e. in cells above the interface 

 = 0 and in cells below the interface F = 1 whilst cells contain-

ng the interface the volume fraction is calculated from the water 

urface elevation. On the solid boundary, the wall model [75] is 

sed for the near-wall treatment in the LES. At the outlet, a radia- 

ive boundary condition is applied and a damping zone can also be 

mployed. As both fluids, i.e. air and water, are solved simultane- 

usly, the kinematic and dynamic free surface boundary conditions 

re inherently implemented at the air-water interface. In the com- 

utation, the initial flow field as well as the hydrostatic pressure 

t t = 0 are prescribed depending on the flow to be solved. 

. Results and discussion 

A convergence study of the two-phase flow approach is carried 

rst, by solving the benchmark problem of a 3D travelling soli- 

ary wave without a structure with the goal to validate the Navier- 

tokes solver together with the interface capturing method at var- 

ous spatial and temporal resolutions. The validation of the cut- 

ell method is then demonstrated by studying several 3D wave- 

tructure interaction problems, such as a solitary wave traveling 

ver a vertical circular cylinder, a solitary wave traveling over a 

orizontal thin plate, and a focusing wave impacting on an FPSO- 

ike structure. The numerical results are compared with available 

xperimental data and detailed 3D water surface profiles and tur- 

ulent vortical structures are visualised. 
5 
.1. Convergence study - solitary wave run-up 

A solitary wave propagating at constant water depth in a canal 

76] is simulated, considered to be a classical benchmark problem 

or wave simulations with the aim to compute viscous damping 

nd wave run-up on a vertical wall. For this case, the turbulence 

odel is switched off and only the molecular viscosity is included 

o quantify the amount of artificial viscous damping of the ap- 

roach. 

The computational setup of this problem is shown in Fig. 2 , 

here h is the still water depth and the domain size L x × L y × L z 
s 20 h × 2 h × h in the streamwise, vertical, and spanwise direc- 

ion, respectively. The same parameters as used in [76] are consid- 

red, where the theoretical wave speed C w 

= 

√ 

gh = 1 . 0 m / s and

he Reynolds number is Re = 5 × 10 4 . The no-slip boundary condi- 

ion is applied at the left, right, bottom and top walls of the do- 

ain while the slip boundary condition is applied for the walls in 

he spanwise direction. In the simulations, the quantities A c and 

 runup , which represent the wave amplitude at the centre of the 

omain and the wave run-up amplitude at the right wall, are used 

o assess the performance of the method. Initially, the water sur- 

ace and zero velocity in the entire domain are prescribed with a 

oussinesq profile at the left wall as: 

(x, z, t = 0) = A 0 / cosh 

2 

[ √ 

3 A 0 

2 

(x ) 

] 

. (20) 
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Fig. 3. Computational results for the 3D travelling solitary wave for the case A 0 /h = 

0 . 4 . 
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Table 1 

Root mean square error of the wave profile for dif- 

ferent spatial resolutions. 

Mesh resolution Time step (s) RMS 

100 × 50 × 5 0.001 2 . 45 E − 3 

200 × 100 × 10 0.001 1 . 33 E − 3 

400 × 200 × 20 0.001 7 . 2 E − 4 

800 × 400 × 40 0.001 0 

The results in the finest mesh are used as refer- 

ence. 
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here A 0 is the maximum elevation at the left wall. The initial 

ave moves towards the right due to gravity and can be consid- 

red as a solitary wave after 6.0 s and this time is set as t = 0 for

he remaining propagation of the solitary wave. The computational 

omain is discretised by a uniform grid of 400 × 200 × 20 in the 

treamwise, vertical, and spanwise directions, respectively. A small 
Fig. 4. Computed wave surface profiles at t = 4 s at various s

6 
ime step �t = 0 . 001 s is used with the first-order backward Euler

cheme and the simulation is run for a total of 20 s. 

Fig. 3 (a) shows snapshots of the solitary wave propagating 

long the channel for the case A 0 /h = 0 . 4 at various instants in

ime. There is slight wave damping due to the viscous effects and 

he predicted wave speed is 1.05 m/s, which is within 5% of the 

heoretical value and agrees with the previous study by [76] . The 

nergy transformation and dissipation compared to the initial state 

re plotted in Fig. 3 (b). After release of the water column near the 

eft wall, some of the initial potential energy is converted into ki- 

etic energy until the solitary wave is fully established. After that, 

oth potential and kinetic energy remain almost constant until ki- 

etic energy transforms into potential energy during the wave run- 

p near the right wall until the wave reaches its maximum height. 

he total energy decreases due to viscous damping and friction. 

In order to assess grid convergence, additional simulations are 

erformed using the same time step �t = 0 . 001 s for three addi-

ional different grid sizes, namely 100 × 50 × 5, 200 × 100 × 10, 

nd 800 × 400 × 40, respectively. Fig. 4 (a) presents water surface 

rofiles in the centre of the channel at t = 4 s as computed on four

ifferent grids. It is shown that apart from the coarse mesh result, 

here are only minor differences for the other three simulation re- 

ults and the profiles collapse onto each other for the finer grids. 

n order to quantify the difference between simulation results, the 

umerical result from simulation on the finest grid are used as a 

eference solution (as there is no analytical solution), and the root 

ean square (RMS) errors are calculated and shown in Table 1 . 

In order to assess the sensitivity of the results due to the 

ime step, simulations are carried out on the grid mentioned 

bove (400 × 200 × 20), but employing three different time steps 

or both first-order and second-order time integration schemes, 
patial and temporal resolutions for the case A 0 /h = 0 . 4 . 
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Fig. 5. Viscous damping rate for solitary waves. 
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Fig. 6. Wave run-up heights versus the wave amplitude at the centre along the 

central plane. 
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amely �t = 0.01, 0.005, and 0.0005 s, respectively. Fig. 4 (b) plots 

redicted wave profiles obtained from the four different simula- 

ions at t = 4 s for the first-order scheme. The differences between 

he numerical results for different time steps are small on the cho- 

en grid when �t < = 0 . 005 s. In fact, the numerical results for

t = 0.001 and 0.0005 s are quite close to each other, indicat- 

ng time step convergence. Similarly, using the numerical result 

btained from the smallest time step as a reference solution, the 

alculated RMS errors of the wave profile in the central plane are 

hown in Table 2 . 

In order to quantify the viscous damping of the wave, three ad- 

itional waves with different A 0 / h are simulated and the results are 
ig. 7. Schematic of the computational setup for the solitary wave over a vertical circular

hown as red dots in terms of polar coordinates. (For interpretation of the references to c

7 
ompared with the analytical solutions proposed by [77] as 

 

−1 / 4 
max = A 

−1 / 4 
0 max 

+ 0 . 08356 

(
1 

Reh 

1 / 2 

)1 / 2 C w 

t 

h 

, (21) 

here A max is the amplitude of the solitary wave and A 0max is the 

nitial elevation. Fig. 5 plots the simulated waves together with the 

nalytical solution demonstrating that the simulation results agree 

onvincingly well with the analytical solutions for smaller wave 

nd this is because the analytical solution obtained from the per- 

urbation theory is valid only for A 0max / h ≤ 0.1 and it is similar to

he results obtained in [76] . 
 cylinder. The locations of the measuring points for the water surface elevation are 

olour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Root mean square error of the predicted wave profile in the central plane for different tem poral 

resolutions for first- and second-order time integration. 

Mesh resolution Time step (s) RMS (1st-order scheme) RMS (2nd-order scheme) 

400 × 200 × 20 0.01 3 . 4 E − 3 2 . 1 E − 3 

400 × 200 × 20 0.005 7 . 2 E − 4 5 . 6 E − 4 

400 × 200 × 20 0.001 7 . 0 E − 6 1 . 5 E − 5 

400 × 200 × 20 0.0005 0 0 

The results in the smallest time step are used as reference. 

Fig. 8. Time history of the water surface elevation along θ = 0 o as predicted nu- 

merically together with experimental data [78] . 
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Fig. 9. Time history of the water surface elevation along θ = 100 o as predicted nu- 

merically together with experimental data [78] . 
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Another quantity to examine is the wave run-up height at the 

ight wall. Fig. 6 shows the predicted run-up as a function of wave 

eight for nine different initial elevations together with numerical 

imulations from other researchers. Good agreement is obtained 

emonstrating the capability of the present approach to simulate 

ave propagation and interaction with solid boundaries without 

ntroducing marked numerical dissipation. 

Finally, mass conservation of the simulations is calculated and 

t is found that the error of the mass is less than 0.001% for A 0 /h =
 . 1 , 0.0015% for A 0 /h = 0 . 2 , and 0.002% for A 0 /h = 0 . 4 at the end

f each simulation. 

.2. 3D solitary wave interacting with a vertical circular cylinder 

A solitary wave interacting with a vertical circular cylinder is 

onsidered next. This case has been studied previously both ex- 

erimentally [78] and numerically [18,22] . In the physical exper- 

ment, the wave tank was 7.6 m long, 0.76 m wide and 0.6 m 

eep. The still water depth was h = 0 . 04 m and a circular cylinder

ith radius R = 0 . 0635 m was placed on the bottom of the tank

nd in the centre line. The corresponding Reynolds number based 

n the water depth and wave speed is approximately 2.81 × 10 4 . 
8 
he simulation is set up to replicate the laboratory measurement 

nd the schematic view of this problem is shown in Fig. 7 . In

he experiment detailed water surface elevations were measured 

n the vicinity of the cylinder as well as horizontal wave loadings 

n the cylinder. The locations of the measuring points in terms of 

olar coordinates are shown on the top in Fig. 7 . in which four 

auging points are along the radial direction with θ measured in 

he clockwise direction and θ = 0 o is the upstream wave direction. 

he computational domain L x × L y × L z is 32 R × 2 h × 12 R with

he cylinder in the centre and it is discretised by a uniform mesh 

280 × 64 × 480 in the streamwise, vertical, and spanwise direc- 

ions, respectively. In the simulation, the solitary wave is generated 

rom the inlet based on analytical solutions and the case with a 

ave height of H/h = 0 . 4 is considered here. 

Figs. 8 , 9 , 10 plot the time history of the water surface ele-

ation as predicted numerically together with experimental data 

f [78] , where the water surface elevation η is normalised by the 

ave height H and the time t is normalised by 
√ 

h/g . All numer- 

cal results are shifted at an instant in the time axis so that the 

redicted peak wave coincides with the experimental measure- 

ent away from the cylinder at r/R = 2 . 92 and θ = 100 o . Reason-

bly good agreement is obtained between the LES results and the 
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Fig. 10. Time history of the water surface elevation along θ = 180 o as predicted 

numerically together with experimental data [78] . 

Fig. 11. Time history of the horizontal wave force on the cylinder as predicted nu- 

merically and as measured in the experiment [78] . 
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Fig. 12. Snapshots of water surface profiles together with turbulent vortical struc- 

tures identified by the λ2 method for a solitary wave propagating past a vertical 

cylinder. 
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xperimental measurements. However, the wave heights at gauge 

oints r/R = 1 . 03 , i.e. close to the cylinder, are over-predicted in

he present simulation. However, we found that this is also ob- 

erved in other numerical simulations [18,22,78] . Compared to pre- 

ious simulations, the predicted wave heights appear closer to the 

xperimental measurements than previous studies due to the high 

esolution of the simulation and an improved representation of vis- 

ous effects and hence improved energy dissipation. 
9 
Fig. 11 plots the time history of the dimensionless horizontal 

ave force on the cylinder as predicted by the simulation and 

s measured in the experiment of [78] . Overall good agreement 

s obtained, especially in terms of the magnitude and phase un- 

il t(g/h ) 1 / 2 = 15 . After that, the force is overestimated due to a

igher wave height predicted in the simulation. 

Fig. 12 presents snapshots of the water surface profiles together 

ith turbulent vortical structures, here identified via isosurfaces of 

2 , i.e. the second invariant of the velocity gradient tensor [79] , to 

dentify vortex cores. The solitary wave is nearly two-dimensional 

efore approaching the cylinder and most of the vortical struc- 
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Fig. 13. Schematic of the 3D computational setup for a solitary wave propagating over a thin horizontal plate. The locations of the wave and pressure gauges are shown as 

red lines and dots in the 2D plane view, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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ures are in the vicinity of the wave crest and the cylinder. During 

he solitary wave’s impact on the cylinder, significant wave-runup 

s observed and more turbulent vortical structures are generated 

round the cylinder. When the wave passes the cylinder, it is split 

nto two parts wrapping around the cylinder and a reflected wave 

s generated that propagates radially outwards, and this can be no- 

iced from the strong vortical structures generated upstream. After 

hat, oscillatory waves are generated followed by a negative wave 

n the upstream. Downstream of the cylinder, the two parts of the 

ave meet the main wave passing the cylinder and develop into 

 three-dimensional wave that propagates towards the outlet. Tur- 

ulent structures are significantly decreased in the vicinity of the 

ylinder while they are enhanced around the solitary wave. 

.3. 3D solitary wave propagating over a thin horizontal plate 

A solitary wave traveling over a thin horizontal plate is inves- 

igated next, a case that has been studied previously by both ex- 
10 
erimentally [80] and numerically [22,80] and to the best of our 

nowledge these previous numerical studies [22,80] have all em- 

loyed two-dimensional domains. 

The computation is set up to replicate the laboratory measure- 

ent and the schematic view of this problem is shown in Fig. 13 .

 thin plate of length L = 1 . 156 m, width L z = 0 . 6 m and thickness

= 0 . 01 m is submerged in a wave tank. The submergence is d and

he water depth is h = 0 . 2 m. The corresponding Reynolds num- 

er based on the plate thickness and wave speed is approximately 

.57 × 10 4 . In the experiment four wave gauges (WG1-WG4) and 

en pressure gauges (P1-P10) along the plate were placed to mea- 

ure the wave elevation and pressure on the plate, respectively, 

nd their locations are marked in Fig. 13 . The computational do- 

ain L x × L y × L z is 11 (m) × 0.32 (m) × 0.6 (m) with the leading

dge of the plate located at x = 4 m, and it is discretised by a uni-

orm mesh 1600 × 160 × 96 in the streamwise, vertical, and span- 

ise directions, respectively. In the simulation, the solitary wave is 

enerated from the inlet based on analytical solutions and the case 



Z. Xie, T. Stoesser, S. Yan et al. Computers and Fluids 213 (2020) 104747 

Fig. 14. Normalised water surface elevation as computed, experimentally measured, and as predicted by the 2D numerical model of [80] . 
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ith a wave height of H/h = 0 . 1 and submergence of d = 0 . 1 m is

onsidered. 

Fig. 14 plots water surface elevations at four gauging points as 

omputed together with experimental data, and the 2D numerical 

esults of [80] , in which the water surface elevation is normalised 

y the wave height H and the time is normalised by the wave pe-

iod T 0 and t 
′ = 0 is when the peak wave passes the gauge point

G2. It can be seen from WG1 that a correct incident wave is gen-

rated upstream and that the reflecting wave is well captured by 

he present simulation. There is a wave transformation above the 

late during wave propagation and the oscillatory wave is reduced 

t WG4 when the wave has passed over the plate. Overall, very 

ood agreement is obtained between the present simulations and 

he experimental data in terms of wave amplitude and phase. The 

ES results are similar to the numerical results obtained by the 2D 

OBRAS model [80] . However it is worth noting that when com- 

ared to the experimental data, the maximum wave elevation is 

lightly better predicted by the LES than the 2D simulation with- 

ut turbulence model in [80] , demonstrating that the LES model is 

ble to capture the energy dissipation during wave-structure inter- 

ction. 

The dynamic characteristics during wave impact is quantified 

n Fig. 15 presenting normalised pressure along the centreline of 

he plate as computed here, as experimentally measured, as well 

s predicted by the 2D numerical model COBRAS of [80] . The LES 

esults are similar to the COBRAS results, and both of them agree 

ell with the experimental data. Better agreement is obtained for 

he pressure above the plate than the points below the plate. 

lthough the magnitude of the pressure is overpredicted by the 

resent simulation towards the lower end of the plate, the phase 

haracteristics are well captured similar to the COBRAS model pre- 

ictions. 

The net vertical force acting on the plate and the moment about 

he plate’s centre is plotted in Fig. 16 . The predicted vertical force 
11 
grees with the experimental data, again similar to the predic- 

ions of the COBRAS model. However, there is some discrepancy 

etween simulation and experiment in terms of the moment, but 

imilar to the result obtained from the COBRAS model. Lo and Liu 

80] mentioned that this might be due to the different spatial reso- 

ution used in experiment and simulation, i.e. there are fewer val- 

es available to compute the moment in the experiment than in 

he simulation. 

Fig. 17 shows snapshots for the water surface profile before, 

uring and after the solitary wave impacting on the horizontal 

late at four different time. It can be seen that the plate has a lit-

le effect on the solitary wave and there is no significant change of 

he wave form when passing the structure. During wave-structure 

nteraction, the vortical structures identified by the λ2 method 

79] in the flow are also shown. Vortical structures are normally 

enerated around the two edges of the plate and in the vicinity 

f the wave crest and trough. Large vortices are generated by the 

ave approaching the plate and being advected when the wave 

asses the plate. 

.4. 3D focusing wave impact on a FPSO-like structure 

A 3D focusing wave, a form of an extreme wave, impact- 

ng on a complex FPSO-like structure is considered. This case 

as a blind test during the Collaborative Computational Project 

n Wave Structure Interaction (CCP-WSI), in which ten different 

umerical models were employed and their results were com- 

ared with experimental data. The computational model is set 

p to replicate the wave and geometric properties of the lab- 

ratory experiment [30] , in which detailed free surface profiles 

nd pressure on the structure were measured. The schematic 

iew of the computational domain is shown in Fig. 18 , where 

he origin is located at the still water level of the inlet along 

he central plane. A smaller section was selected from the test 
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Fig. 15. Normalised pressure along the centreline of the plate as computed, experimentally measured, and as predicted by the 2D numerical model of [80] . 

Fig. 16. Normalised force and moment as computed, experimentally measured, and as predicted by the 2D numerical model of [80] . 

12 
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Fig. 17. Snapshots of water surface profiles together with turbulent vortical structures identified by the λ2 method for a solitary wave propagating over a thin horizontal 

plate. The time interval between each snapshot is 0.5 s. 

13 
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Fig. 18. Schematic of the computational setup for the focusing wave impacting on a FPSO-like structure. 

Fig. 19. Numerically generated wave and the experimental data at WG1 without structure. 
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also observed from the turbulent structures around the FPSO. 
ection in the experiment in order to avoid wall effects and 

lso to save computational effort. The computational domain 

 x × L y × L z is 12 (m) × 3.3 (m) × 3 (m) with the FPSO-like 

tructure (1.2 m long, 0.3 m wide, and 0.3 m deep) located at 

 = 2 . 37 m away from the inlet, and it is discretised by a uni-

orm mesh 320 × 320 × 160 in the streamwise, vertical, and span- 

ise directions, respectively. The corresponding Reynolds number 

ased on the structure height and wave speed is approximately 

.8 × 10 6 . 

In order to generate the focusing wave, linear wave theory is 

sed here, where both the time history of wave elevations and ve- 

ocities for each component (244 components in total) is specified 

or the water corresponding to the experiment, while the veloci- 

ies are set to zero for the air. In order to check whether the cor-

ect focusing wave is generated at the inlet, the time history of the 

ave elevation is compared with the experimental measurements 

ithout the structure at wave gauge WG1 in Fig. 19 . It can be seen

hat a reasonable agreement is obtained from the linear wave the- 
14 
ry and better wave generation can only be obtained by using the 

elf-correction wavemaker technique [61] . The present LES model 

as been validated against the experimental measurements as well 

s other numerical models in terms of water surface elevation and 

ressure at various locations around the FPSO as well as the effi- 

iency in [30,61] , here the focus is on the kinematics and dynam- 

cs of the wave-structure interaction and the resulting turbulence 

eld. 

Fig. 20 shows snapshots of the water surface profile and turbu- 

ent vortical structures identified by the λ2 method [79] . It can be 

een that some vortical structures are generated around the struc- 

ures at the beginning when small waves pass the FPSO. The wave 

mplitude gradually increases until the focusing wave impacts on 

he structure. During impact, more turbulent vortical structures are 

enerated in the vicinity of the crest and trough of the focusing 

ave. When the focusing wave passes the structure, there is a 

mall reflected wave generated upstream the bow, which can be 
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Fig. 20. Snapshots of the water surface together with turbulent vortical structures identified by the λ2 method. 
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. Conclusions 

In this paper, a two-phase flow approach has been introduced 

o be employed for investigating 3D wave-structure interaction 

roblems. The large-eddy simulation approach is adopted, in which 

he space-filtered Navier–Stokes equations are solved on Cartesian 

rids. The dynamic Smagorinsky subgrid-scale model is employed 

o compute sub-grid scale stresses and to account for the effects 

f the unresolved small scales of turbulence on the large scales. 

he finite volume method is utilised to discretise spatial deriva- 
15 
ives and the PISO algorithm for the pressure-velocity coupling. 

n implicit backward difference discretisation is used for the time 

erivative. The air-water interface is being captured using the high 

esolution VOF scheme CICSAM, and the Cartesian cut-cell method 

s implemented to deal with complex geometries immersed in the 

artesian fluid grid. 

With the goal to thoroughly validate the in-house code Xdol- 

hin3D, several complex multi-dimensional flows have been stud- 

ed. A travelling solitary wave in a closed channel is considered 

rst, and run-up height and viscous damping characteristics have 
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een compared with experimental data and an analytical solution. 

ood agreement has been found, spatial and temporal convergence 

as been demonstrated and energy dissipation and mass conser- 

ation has been assessed. The capability of the present LES-based 

wo-phase flow approach to predict accurately and reliably wave- 

tructure interaction problems for geometrically-complex struc- 

ures (such as a circular cylinder, a horizontal thin plate, and 

n FPSO-like structure) has been demonstrated. Numerically pre- 

icted water surface elevations, pressure at selected locations on 

he structure, and acting wave forces and moments on the struc- 

ure have been compared with available experimental data or the 

esults of other numerical simulations, respectively, an overall con- 

incing agreement has been obtained. Furthermore, snapshots of 

ave surfaces and turbulent vortical structures, as identified by 

he λ2 method, have been presented and discussed, visualising the 

omplex turbulent flow fields around the structures during WSI. 

This study demonstrates the capability of the present multi- 

hase flow model to predict 3D wave-structure interaction. The 

odel can act as a complementary approach to experimental in- 

estigations to gain further insight into the kinematics and dynam- 

cs of three-dimensional wave-structure interaction problems. 
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