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ABSTRACT: A novel method for the synthesis of MFI zeolites has been developed, which does not require any crystal seeds or solvent. 

The adaptability of this method was also evidenced; a series of ZSM-5 zeolites with differing Si/Al ratios (18~∞) were synthesized, which 

to date, has been a challenge in the field of solvent-free synthesis. The materials were probed by in-situ DRIFTS and 2D 27Al-19F 

HETCOR NMR spectroscopy, the results from which indicated 

that fluorine-containing species play a crucial role in the crystalli-

zation of ZSM-5. During the crystallization process F- anions 

coordinate with Al3+ cations, resulting in the formation of 6-

coordinated “F-Al-O-Si” species. It is these intermediate species 

which drive the formation of tetrahedral [AlO4]- units in the zeo-

litic framework. The effectiveness of these materials as catalyst 

supports was subsequently assessed in the hydrogenation of le-

vulinic acid and glucose, which exhibited a comparable perfor-

mance to commercial ZSM-5. The simple, efficient and low-cost 

method presented herein provides an alternative approach for the green scaled-up synthesis of zeolites. 

KEYWORDS: Seed-free synthesis; solvent-free synthesis; ZSM-5 zeolite; solid-phase crystallization; biomass hydrogenation

INTRODUCTION 

Zeolite Socony Mobil-5 (ZSM-5) is a crystalline aluminosili-

cate zeolite with an MFI framework. It is one of the most com-

monly used catalysts in the petrochemical and fine chemical in-

dustries and has recently displayed promise in the field of biomass 

valorization, by virtue of its strong acidic sites and structural ge-

ometry.1, 2  ZSM-5 was first synthesized in 1969 by Argauer and 

Landolt 3 using a hydrothermal method. This was soon followed 

by the development of other synthetic methodologies, such as 

solvothermal and ionothermal routes.4-6 These methods are usual-

ly conducted in sealed autoclaves with large amounts of solvent, 

which inevitably leads to the accumulation of large amounts of 

waste. Furthermore, the use of a solvent can result in the dissolu-

tion and loss of silica-based species in the alkaline media, and 

results in synthesis occurring under high autogenous pressure.7 To 

overcome these limitations, dry gel and vapor-phase transfer 

methods were developed.8-10 While both of these approaches have 

been confirmed as effective methods for the synthesis of zeolites, 

large amounts of water are still required as a solvent to prepare 

the starting precursor.  

In 2012, Xiao and co-workers developed a novel synthetic 

methodology for the solvent-free synthesis of zeolitic materials.11, 

12 An all-silica MFI zeolite was obtained simply by mixing and 

heating raw materials: SiO2 gel, sodium silicate hydrate, 

tetrapropylammonium bromide, and NH4Cl.13, 14 It was also 

demonstrated that the aluminosilicate ZSM-5 (with a Si/Al ratio 

of 14.3) could also be produced in this way, when zeolite seeds 

were incorporated into the preparative procedure; these seeds are 

considered to be essential for the formation of the zeolites. De-

spite this innovative development, dense phases or MOR impuri-

ties were generated concomitantly when the methodology was 

trialled for the synthesis of ZSM-5. As such, the solvent-free syn-

thesis of ZSM-5 zeolites with wide Si/Al ratios, remains a chal-

lenge, particularly in the absence of crystallite seeds.15  

Understanding the role of F- anions in the zeolite crystallization 

process has always been a very significant topic. Since the initial 

work by Xiao and co-workers, additional zeolites such as MFI, 
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BEA, EUO and TON have also been synthesized in the presence 

of NH4F.16, 17 The presence of F- anions was considered to result 

in the formation of SiF6
2- species, which are suggested to initiate 

the crystallization of amorphous SiO2. However, the role of anion-

ic F- species in the formation of the crystal from this amorphous 

phase remains elusive.18 

The work herein, reports on a novel solvent-free and seed-free 

methodology, that can be used to synthesize MFI zeolites using 

only two reagents; SiO2 and C12H28NF. It was also established that 

through combination of these two precursors with NaAlO2, the 

method could be used to synthesize ZSM-5 materials with Si/Al 

ratios ranging from 18 to infinity. Various additional Al 

precursors, (C3H7O)3Al, (C4H9O)3Al, AlCl3, (NH4)3AlF6 and 

Al2(SO4)3, were also investigated and found to significantly 

influence the ratios of Si/Al in the final ZSM-5. The resultant 

zeolite herein was probed by a series of analysis techniques (in-

situ DRIFTS, 1D 19F/27Al/29Si NMR and 2D 27Al-19F HETCOR 

NMR), the results from which evidenced that F- anions coordinate 

with Al3+ cations, which results in the formation of 6-coordinated 

“F-Al-O-Si” species during solvent-free synthesis. This study 

uncovered the crucial role of F- and provideed further insights into 

the mechanism of solid-phase crystallization of ZSM-5. 

EXPERIMENTAL SECTION 

Materials. Sodium aluminate (NaAlO2, Aladdin), aluminium 

isopropoxide [(C3H7O)3Al, Tokyo Chemical Industry], aluminum 

sec-butoxide [(C4H9O)3Al, Aladdin], aluminum chloride 

(AlCl3·6H2O, Aladdin), ammonium fluoroaluminate [(NH4)3AlF6, 

Aladdin], aluminum sulfate [Al2(SO4)3·18H2O, Aladdin]), 

tetrapropylammonium fluoride (C12H28NF2H2O, J&K Chemical 

Reagent Co, Ltd.), solid silica gel (Qingdao Haiyang Chemical 

Reagent Co, Ltd.), commerical zeolite (XFNANO Materials Tech 

Co, Ltd). All chemicals were used direct without further purifica-

tion. 

Synthesis. In a typical run, 1.6 g silica, 0.3-0.9 g 

C12H28NF2H2O and a certain amount of Al precursor according 

to a Si/Al ratio were mixed and ground in a mortar for ten minutes, 

then transferred to an autoclave and sealed. The autoclave was 

heated at 180 ℃ for a given time. Once finished, the sample was 

cooled down. Then the obtained samples were directly for XRD 

characterization, the X-ray Fluorescence spectrum and NMR 

spectrum characterization. And the Si/Al ratio in the feed there-

fore was adopted in this work. Prior to preparing the zeolite sup-

ported Ru catalysts, all the zeolite support are calcined at 550 ℃ 

for 4 h in air. Then RuCl3xH2O as a Ru precursor was loaded on 

the support in water by the wetness impregnation.  

Characterization. The X-ray powder diffraction (XRD) pat-

terns of catalysts were obtained with a Bruker D8 Advance X-ray 

powder diffraction instrument, using Cu-Ka radiation (k=0.154 

nm). Transmission electron microscopy (TEM) images were taken 

using a field emission JEOL JEM-2010 instrument at 200 kV. N2 

adsorption-desorption experiments (BET) were performed with a 

Micromeritics ASAP 2020 surface area and porosity analyzer. 

TGA was conducted in Mettler Toledo. In situ DRIFT experi-

ments were conducted in Thermo Scientific Nicolet Is50. Pyri-

dine-FTIR was conducted in CRCP-7070 platform in Tianjin 

Xianquan company.  

Solid-state NMR experiments were performed on a Bruker 

AVANCE III 400 MHz spectrometer operating at Larmor fre-

quencies of 399.33, 375.71, 104.06, and 79.33 MHz for the 1H, 
19F, 27Al, and 29Si nucleus, respectively. Solid-state 19F and 27Al 

NMR spectra were recorded using a 4 mm magic-angle-spinning 

(MAS) probe operating at a spinning rate of 12.5 kHz. A single-

pulse sequence with a π/2 pulse length of 2.4 s and a recycle 

delay of 5 s was used for the 19F NMR experiments, whereas 27Al 

MAS NMR spectra were recorded using a single-pulse sequence 

with a pulse length of 1.2 s (π/2) and a recycle delay of 1 s. 

Two-dimensional (2D) 19F-27Al heteronuclear correlation 

(HETCOR)[1] experiments were carried out with a CP contact 

time of 4 ms and a recycle delay of 3 s. All 1D 29Si MAS NMR 

experiments were conducted with high power proton (1H) decou-

pling using a π/2 pulse of 4.9 us and a recycle delay of 80 s on a 7 

mm triple-resonance MAS probe with a spinning rate of 5 kHz. 

The chemical shifts of the 19F, 27Al, and 29Si nucleus were exter-

nally referenced to CFCl3, 1 M aqueous Al(NO3)3, and kaolinite (-

91.5 ppm), respectively. 

Catalytic tests. In a standard experiment, 4.0 mL of 1.2510 

mol/L LA solution together with 20 mg of the reduced catalyst 

was added into a 30 mL Teflon-lined stainless reactor with a mag-

netic stirring bar. The reactor was flushed with H2 for three times 

and then pressurized with 3.0 MPa H2 (RT). After a stirred-free 

preheating for 15 min at 70 ℃, the reaction started with stirring of 

1300 rpm. After the reaction finished, the reactor was cooled to 

room temperature and the mixture was centrifuged with water and 

ethanol, the solid was dried at 70 ℃ overnight. All remaining 

filtration was transferred into a volumetric flask, and 1.0 mL 1,3-

PDO solution as an internal standard was added before diluting to 

50 mL with ethanol. Then the solution was analyzed using a gas 

chromatograph (Shimadzu, 14C) equipped with a capillary col-

umn (RestekStabilwax 30 m×0.53mm×1um) and a flame ioniza-

tion detector (FID). The hydrogenation reaction procedure of 

glucose is the same as the hydrogenation of levulinic acid. 

RESULTS AND DISCUSSION 

Synthesis of all-silicon MFI zeolite.  

Inspired by the work of Xiao and co-workers,11, 16 we attempted 

to reproduced the synthesis of the MFI zeolite but substituted the 

starting materials (SiO2 gel, sodium silicate hydrate, tetraprop-

ylammonium bromide and NH4Cl) with SiO2 and C12H28NF. 

Through trial and error, an effective synthesis procedure was es-

tablished: a defined amount of SiO2 and C12H28NF were mechani-

cally ground and sealed for crystallization in an autoclave at 

180 °C for 12 h. The crystallization temperature was established 

to be an important parameter in the formation of the zeolite. When 

aged at a temperature below 150 °C it was evident that crystalline 

zeolitic materials could not be obtained, even if the crystallization 

time was prolonged extensively (Figure S1). However, when an 

aging temperature in excess of 150 °C was utilized, crystalline 

zeolitic materials were obtainable. In Figure 1, the diffraction 

patterns and morphologies of samples synthesized from SiO2 and 

C12H28NF after various times of crystallization at 180 °C are dis-

played. Figure 1a evidences that at 180 °C, the SiO2 remains 

amorphous for the first 4 h of the reaction. The characteristic MFI 

diffraction peaks (2θ = 7.8°, 8.7°, 22.94°, 23.6°, 24.26°, 45°) gradu-

ally increased with reaction time from 4 to 12 h. No further 

changes in crystallinity were observed at crystallization time over 

16 h. The evolution of the materials is also evidenced by TEM 

(Figures 1b-1e). The samples transformed from amorphous col-
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loidal mixtures (Figure 1b) to colloidal aggregations after 4 h 

(Figure 1c), and partially crystallized to small fragments after 

another 4 h (Figure 1d), until the final MFI zeolite was formed at 

crystallization time of 12 h or longer (Figure 1e). The crystalliza-

tion process at different stages was also monitored by 29Si NMR 

measurements (Figure 1f). The resonance at ca. -112 ppm is char-

acteristic of the Si(4Si) species19-22 and evidently becomes more 

defined and enhanced as the crystallization time is extended, fur-

ther evidencing that the crystallinity of the material increased over 

time. 

The material recovered after 12 h of crystallization was subse-

quently probed by N2 sorption. This material exhibited a BET 

surface area and pore volume of 212 m2/g and 0.31 cm3/g, respec-

tively (Figure S2), which was comparable to the hydrothermally 

prepared commercial MFI zeolite (256 m2/g, 0.12 cm3/g). It was 

confirmed that the recovered material exhibited a mesoporous 

structure, with an average pore diameter of 4.4 nm (Figure S2). 

Such properties are considered to be exceptionally important in 

catalysis, as they can reduce transfer and diffusion limitations and 

increase accessibility to active sites.

In-situ DRIFT spectroscopy was subsequently utilized to moni-

tor the solid-phase structural transformation of the mixture of 

SiO2 and C12H28NF during the crystallization process. To ensure 

that observations were not attributed to changes in the structure of 

the reagents independently, two control experiments were con-

ducted which involved heating the two reagents separately. For 

each of these experiments, the reagents were added into the 

DRIFT cell and heated from 20 °C to 180 °C, where the tempera-

ture was maintained for a set time. When SiO2 gel was run inde-

pendently, the structural properties remained almost unchanged 

(Figure S3). Similar observations were also made by monitoring 

the (CH3CH2CH2)4NF (Figure S4). Three significant vibrational 

peaks of ν(C-H) at ca. 2845-2975 cm-1, characteristic of vibrations 

in -CH3, -CH2 and -CH2 groups of CH3CH2CH2)4NF,23 were used 

to monitor whether any changes in this material occurred. How-

ever, no significant changes in intensity were observed during this 

stage of the procedure. From these observations, it is evident that 

the SiO2 gel and (CH3CH2CH2)4NF are stable when exposed to 

the crystallization conditions independently. 

Following these control experiments, a mixture of SiO2 and 

(CH3CH2CH2)4NF was combined in the DRIFT cell and exposed 

to the same heating procedure. As shown in Figure 2a, three peaks 

at ca. 2880 cm-1 which are characteristic of C-H stretches were 

assigned to the (CH3CH2CH2)4N+, while the peaks at 1470 cm-1 

and 1380 cm-1 were attributed to the in-plane bending vibrations 

of δas(C-H) and δs(C-H), respectively.23 A notable change is ob-

served after just 10 minutes (60 °C) of heating (Figure 2a & Fig-

ure S6). Prior to this 10-minute mark, the peaks characteristic of 

the C-H stretching vibrations ν(C-H) are clearly visible, located at 

ca. 2845-2975 cm-1 and are consistent with those observed in the 

spectrum of C12H28NF (Figure S4). This indicates that the 

C12H28N+ remained unchanged during the first 10 minutes of 

analysis (20-60 °C), after which point it rapidly interacts with 

SiO2 species. This is evidenced by a significant reduction in the 

intensity of the C-H stretching vibrations (Figure 2a). As the tem-

perature of the DRIFT cell reaches and is maintained at 180 °C, 

changes in the spectra are reported over time in Figure 2b (from 1 

to 12 h). The spectrum of the mixture after heating for 8 h con-

tains a peak at ca. 1125 cm-1, which is characteristic of an asym-

metric νas(Si-O) stretch20, 21 and evidences that Si-O bond for-

mation has occurred. After 12 h, the intensity of the peak at 1125 

cm-1 increases further and two new peaks at 1167 and 1200 cm-1 

also emerge. These two additional peaks can be assigned to the 

tetrahedral asymmetric stretching vibration of νas(SiO4),20-22 evi-

dencing that after 12 h of reaction, the formation of tetrahedral 

skeleton is achieved. XRD patterns of this sample after 12 h con-

firmed that the diffractions characteristic of MFI were observable 

in Figure S7a. Additional vibrations at 465 cm-1 and 544 cm-1 are 

also observed after 12 h of reaction, which are characteristic of 

double penta-rings of MFI zeolite (Figure S7b).19 

Synthesis of ZSM-5 with Si/Al ratio of 18-.  

Given that the MFI silicalite-1 has no acidity, it has limited cat-

alytic applications. Aluminosilicate ZSM-5 zeolite on the other 

hand consists of acid sites; the strength and abundance of which 

can be tailored. For this reason and its unique pore structure, 

ZSM-5 zeolites are considered to be one of the most important 

zeolites from an industrial perspective. To establish whether the 

novel methodology invoked for the synthesis of MFI silicalite-1 

zeolite could be used for the synthesis of ZSM-5, some new ex-

periments were conducted.  

Figure 1. a) XRD patterns of MFI silicate-1 samples at various times of crystallization at 180 °C; b) - e) TEM images of MFI silicate-1 

samples after 0, 4, 8, and 12 h of crystallization at 180 °C, respectively; f) 29Si MAS NMR spectra of the MFI silicate-1 at various times 

of crystallization 180 °C. 
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For this, NaAlO2 was added to the mixture of SiO2 and 

(CH3CH2CH2)4NF, ground together and sealed in an autoclave. 

Once again, the temperature of the autoclave was increased 

steadily to 180 °C, where it was maintained for up to 48 h. The 

XRF measurements confirm that weight ratio of Na accounts for 

ca. 0.059 and 0.001 present in the final pre-synthesized from 

NaAlO2 and (NH4)3AlF6, respectively. The corresponding diffrac-

tion peaks and changes in crystallinity for the samples at different 

reaction times are displayed in Figures 3a and 3b, respectively. 

Diffraction peaks characteristic of ZSM-5 zeolite appear after 8 h 

of reaction, though the crystallinity at this stage is quite low (< 60% 

in Figure 3b). The crystallinity of the sample reached a maximum 

after 24 h of reaction, after which no further notable changes in 

crystallinity was observed. As evidenced, the addition of an Al 

precursor requires a longer crystallization time compared to the 

synthesis of MFI zeolite (12 h). 

Figure 2. In-situ DRIFT spectra of the MFI silicate-1 sample from SiO2 and C12H28NF in an in-situ pool at atmospheric pressure at the rate 

of 4 °C/min from 20 °C (0 min) to 180 °C, and then keep at 180 °C until 720 min. More details see Figure S5-S6 and Table S1. 

The ratio of Si/Al is a very important parameter of ZSM-5 zeo-

lites, as this is what ultimately dictates the concentration of acid 

sites that are present in the material. As such, it was quite signifi-

cant to assess what concentrations of Al can be obtained in ZSM-

5 materials through the crystallization process. Surprisingly, it 

was determined that ZSM-5 zeolites with a wide range of Si/Al 

ratios could be prepared in this way; a ZSM-5 zeolite with a Si/Al 

ratio as low as 5 was produced. It is important to note that the 

Si/Al ratios discussed herein, are calculated theoretically from the 

quantities of each in the raw feed (SiO2 / NaAlO2). This 

methodology is applied throughout this work, unless stated 

otherwise. Figure 3c contains XRD patterns for synthesized ZSM-

5 zeolites with differing Si/Al ratios, all of which consist of char-

acteristic MFI diffraction peaks. The crystallinity of these materi-

als does however decrease significantly as the Si/Al ratio was 

reduced. 

It is well established that the Al precursors play an important 

role in the synthesis of aluminosilicate zeolites, and determine the 

scope of the obtainable Si/Al ratios. To obtain ZSM-5 materials 

which could have a wide range of Si/Al ratios, it was important to 

establish how other Al precursors influenced the crystallization 

process. For this a series of additional crystallization experiments 

were conducted using alternative aluminum precursors to NaAlO2, 

which included aluminum isopropoxide [(C3H7O)3Al], aluminum 

sec-butoxide [(C4H9O)3Al]), aluminum chloride (AlCl3·6H2O), 

ammonium fluoroaluminate [(NH4)3AlF6] and aluminum sulfate 

[Al2(SO4)3·18H2O]). Once again, the quantity of aluminum 

precursor was varied to establish how this influenced the 

crystallization process. Each crystallization experiment was 

conducted using the same procedure reported previously; 

precursors were added to an autoclave which was steadily heated 

to 180 °C and the temperature maintained for up to 48 h. Each of 

the resultant material was probed by XRD (Figure S8), and the 

obtainable Si/Al ratios using the different Al precursors are 

outlined in Figure 4. The use of NaAlO2 and (NH4)3AlF6 allowed 

for the synthesis of ZSM-5 materials with the widest range of 

Si/Al ratios, from as low as 18 to infinity. Whilst the (C4H9O)3Al 

and (C3H7O)3Al precursors were also effective (Si/Al > ~40), 

materials containing higher concentrations of Al were not 

obtainable. It was also established that some inorganic Al 

substrates such as [Al2(SO4)3·18H2O] can also be used to produce 

Al-containing ZSM-5 (Si/Al = 57). When AlCl3·6H2O was trialed, 

no crystallization was observed and no zeolitic material was 

obtained (Figure S8c). The logical deduction is likely that this 

crystallization suppression is attributed to the Cl- anions 

occupying positions typically filled by F- anions, which ultimately 

inhibits the key role of F- during solid-phase crystallization. 

Besides, it is worth mentioning that a trace amount of water 

embodied in the raw materials is significant for crystallization, 

although no additional water was added into synthesis. This is 

consistent with the results reported by Xiao’s group.11-13, 15, 16 The 

underlying roles of water during crystallization is still obscure and 

under investigation. 
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Figure 3. (a) XRD patterns of ZSM-5 samples with different crystallization time at 180 °C using SiO2, (CH3CH2CH2)4NF and NaAlO2 as 

raw materials. (b) Relative crystallinity of ZSM-5 samples at 0, 4, 8, 12, 24, 48 h (The crystallinity of zeolite at 180 °C was denoted as 

100%) (c) XRD patterns of ZSM-5 zeolite with different Si/Al ratios. 

Figure 4. The Si/Al ratios of ZSM-5 synthesized using different 

Al sources in the seed-free and solvent-free method. The synthetic 

condition is that an Al precursor, mixed with SiO2 and C12H28NF, 

was ground and sealed at 180 °C for 48 h. The crystallinity of 

ZSM-5 prepared by NaAlO2 (180 °C, 48 h) was used as a refer-

ence (100%). When the crystallinity of a zeolite synthesized by a 

certain Si/Al ratio exceeded 80%, it was considered that the crys-

talline zeolite was successfully obtained at this Si/Al ratio. 

The proposed mechanism of crystallization 

A series of additional experiments were subsequently conduct-

ed in order to derive a greater understanding of the mechanism of 

crystallization.24 C12H28NBr and NH4F were used as substitutes 

for C12H28NF to run some control experiments. For these experi-

ments, mixtures of SiO2, C12H28NBr, and NH4F were ground, 

sealed into an autoclave and maintained at 180 ℃ for 15 h. The 

corresponding XRD patterns for the recovered materials after 15 h 

are displayed in Figure S9. Interestingly, crystalline MFI zeolite 

was not obtained; only a broad peak of amorphous SiO2 and dif-

fraction peaks characteristic of NH4SiF6 were observable in the 

XRD pattern of the recovered material (Figure S9). This indicates 

that the F- anions must be in close proximity to the C12H28N+ cati-

on to facilitate crystallization. The roles of C12H28N+ have been 

being investigated and are acknowledged to be effective templates 

for the synthesis of zeolites with an MFI framework in hydro-

thermal synthesis.25, 26 C12H28N+ is embedded into the silicate 

network, forming C12H28N+-silicate clathrates; amorphous colloi-

dal particles which are several nanometers in diameter. They are 

the primary building blocks of ZSM-5, whose conformation and 

confinement resemble their positions in channel intersections of 

crystalline C12H28N+-ZSM-5.27 When compared with the hydro-

thermal synthesis procedure, F- anions in this solvent-free synthe-

sis were also found to play a very important role in this synthesis 

methodology. 

29Si, 27Al and 19F MAS NMR experiments were subsequently 

performed in order to assess how the chemical environment 

evolves during the ZSM-5 crystallization process when the stand-

ard procedure and reagents were employed.28, 29 29Si NMR spectra 

corresponding to the ZSM-5 sample after various lengths of crys-

tallization (0―24 h) are displayed in Figure S10-S12. The peak 

intensity increases and becomes narrower as the reaction time was 

extended from 0 h to 12 h, indicating that the material becomes 

more crystalline over time.16 The 19F MAS NMR spectrum of 

these synthesized samples is displayed in Figure 5a. The intense 

resonance centered at ca. -119 ppm was ascribed to F- species 

balancing the charge of C12H28N+ quaternary cations within 

pores.30 This phenomenon was observed throughout the crystalli-

zation process. Two additional resonances are also observed at ca. 

-65 ppm and ca. -80 ppm, which can be attributed to F- anions 

occupying positions within the cages [415262] of zeolitic frame-

work31-33 and interacting with penta-coordinated [SiFO4]- 

species,33-35 respectively. The spatially coordinated conformations 

of these species are illustrated in Figure 5d. Interestingly, these 

peaks did not emerge until after 4 h of reaction and appeared to 

become more prominent as the crystallization time was extended. 

This indicates that F- anions migrate into the zeolite cage, which 

in turn facilitates the formation of Si-O tetrahedrons in the zeolitic 

framework. 

Additional high-field signals at ca. -178 ppm and -191 ppm 

were also observed. We consider these to be attributed to the ex-

istence of Na+ in F-bearing aluminosilicate species. The former 

can be assigned to the F atoms in tetrahedral Al species, such as 

[AlF2O2]-Na+; based on previous reports.36, 37 This signal first 

emerges after 8 h of crystallization, but continues to increase in 

intensity over time. The strong 19F signal at -191 ppm could evi-

dence the formation of hexa-coordinated [AlFx(OSi(OH)3)6-x]3-

Na+ and penta-coordinated [AlFx(OSi(OH)3)5-x]2-Na+ struc-

tures. Previous studies have suggested that the former is unstable 

and rapidly decomposes to the corresponding penta-coordinated 

Al species upon formation.36, 38 This ‘F-Al-O-Si’ signal also ap-

pears to increase in intensity as the crystallization process pro-

ceeds. It can therefore be proposed that the formation of the zeo-
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litic framework is instigated through the migration of F- anions 

which was in coordination with C12H28N+ to produce “F-Al-O-Si” 

containing species. 

Similar conclusions can also be drawn from inspection of the 
27Al NMR spectrum (Figure 5b). The signal at ca. 79 ppm can be 

assigned to anionic Al(OH)4
− species in the Al-containing raw 

materials.39, 40 The additional resonances observed at ca. 52 ppm 

and 25 ppm are attributed to tetrahedral [AlO4]- and penta-

coordinated [AlO5]2- anions, respectively. Interestingly, the width 

of the signal at 52 ppm gradually narrowed and became more 

defined as the crystallization time was increased, indicating that 

the quantity of [AlO4]- present increases over time. However, the 

other signal at ca. 25 ppm did not appear until after 8 h of crystal-

lization, which suggests that it is indicative of penta-coordinated 

Al species [AlFx(OSi(OH)3)5-x]2-Na+. After this signal first ap-

pears, it too continues to increase in intensity over time. Peaks at 

ca. 0 ~ 7 ppm were also observed and can be assigned to hexa-

coordinated Al in [AlFx(OSi(OH)3)6-x]3-Na+ species. We there-

fore propose that the formation of “F-Al-O-Si” species, leads to 

the construction of tetrahedral [AlO4]- units. The small amounts of 

F- retained in zeolite can be removed by pyrolydrolytic extraction 

techniques, which are commonly employed to remove trace quan-

tities of F- from glasses, rocks and minerals and raw materials or 

products in some industrial processes.41, 42 Interactions between F 

and Al atoms in the various intermediates species formed during 

the crystallization process were further studied by a 2D 19F-27Al 

heteronuclear correlation (HETCOR) NMR technique (Figure 

5c).39, 43 At the initial stage of the crystallization process no corre-

lation was detected, as shown in Figure 5c (t = 0 h). However, 

when the crystallization time was extended to 4 h, a very weak 

correlation peak at ca. (0, -189) ppm was observed, indicative of 

the incipient transfer of F- ions from the C12H28N+F- molecules, in 

the formation of the ‘F-Al-O-Si’ species. As the crystallization 

time was increased (t = 8 h), this peak increased to ca. (0-7, -191) 

ppm. This further evidences that the ‘F-Al-O-Si’ species, such as 

[AlFx(OSi(OH)3)6-x]3-Na+ and [AlFx(OSi(OH)3)5-x]2-Na+, play 

a crucial role in the crystallization process. The data acquired 

from the 2D NMR experiments are consistent with the 1D 27Al 

and 19F NMR spectra and provide solid experimental evidence of 

the importance of the ‘F-Al-O-Si’ species in the crystallization 

process.

Figure 5. (a) 19F and (b) 27Al MAS NMR spectra of ZSM-5 zeolites crystallized for 0, 4, 8, and 12 h. (c) 2D 19F-27Al HETCOR MAS 
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NMR spectra of ZSM-5 zeolites crystallized for 0, 4, 8, and 12 h. (d) Possible spatially coordinated conformations of fluoride anions and 

aluminum ions during crystallization.

The textural properties, acidity and performance as a cata-
lyst support 

The textural properties of the materials formed as a function of 

crystallization time (0 ~ 48 h) were also investigated, using SiO2, 

C12H28NF and NaAlO2 as raw materials and the autoclave temper-

ature fixed at 180 °C. Each of the materials exhibited characteris-

tic IV-type isotherms, whatever the timing, as shown in Figure 

S13. The initial sample mixture (t = 0 h) presented a hysteresis 

loop of H2 and is characteristic of porous SiO2 gel. As the time 

increased (t > 4 h) the hysteresis loop became H3 in character, 

which typically indicates that slit apertures are present, but can 

also be derived from sheet particles.44 We propose that this evi-

dences the formation of the colloidal aggregations during crystal-

lization process, as previously depicted in Figure 1. When the 

final material after 48 h of crystallization was calcined, it exhibit-

ed a H4-type hysteresis loop, which is often observed in mi-

croporous materials like activated carbon, etc. This result is con-

sistent with that of the commercial ZSM-5 zeolites. It demon-

strates this ZSM-5 material consists of both meso- and micro-

pores, which aligns with corresponding industrial ZSM-5 sample. 

The BET surface area, microporous surface area, pore volume and 

pore diameters for each of the samples are displayed in Table S2. 

Aluminosilicate ZSM-5 typically consists of both Brønsted (B) 

and Lewis (L) acid sites,45 which arise from an imbalance be-

tween the valence states of Si4+ and Al3+ and the unsaturated co-

ordination of Al.46, 47 Pyridine-FTIR spectroscopy was used to 

monitor the acidic sites of ZSM-5 materials (Si/Al = 53) synthe-

sized from aluminum isopropoxide (Figure S14A-C). In a typical 

experiment, pyridine vapor was passed over the catalyst at 50 °C 

for a fixed period and subsequently heated to 200 °C under N2, to 

ensure that any physisorbed pyridine was desorbed and the spec-

trum was stable. The peaks at 1540, 1490, 1450 cm-1 are charac-

teristic of B, B+L, and L acidic sites, respectively.48, 49 The peak 

at 1595 cm-1, is typically attributed to strong L acid sites50, the 

broad peak at 1620 cm-1 is typically attributed to a bending mode 

of physisorbed water.51 Even upon sequential heating to 300 °C, 

these peaks are still distinguishable, although a notable reduction 

in the associated intensity is observed. The pyridine-FTIR spectra 

of the as-prepared ZSM-5 sample with higher Si/Al ratios of 133, 

are also presented in Figure S15. It presented a similar trend with 

that zeolite sample (Si/Al = 53), but a notable reduced peak inten-

sity. In addition, the spectra of the ZSM-5 prepared using NaAlO2 

as the precursor was shown in Figure S16. No pyridine-adsorption 

peak can be observed in this Na-type zeolite. 

The catalytic viability of the synthesized ZSM-5 zeolites with 

different Si/Al ratios was accessed.52 The materials were used as 

supports for Ru nanoparticles and tested for the aqueous phase 

hydrogenation of levulinic acid at mild temperature. As shown in 

Figure 6, after loaded the Ru component, Ru/ZSM-5 (Si/Al = 133) 

catalyst gave a better activity than Ru/silicalite-1 (Si/Al = ∞). It 

gave an 85% yield of γ-valerolactone at 100% conversion of le-

vulinic acid at 70 °C, which is close to the performance of a 

commercial ZSM-5 supported Ru catalyst. These catalysts also 

catalyzed hydrogenation of glucose to hexitol at water. The 

Ru/silicalite-1 catalyst presented almost 100% yield of hexitol, 

which has a similar result to the commercial one. Evidently, the 

zeolitic materials synthesized in this study exhibited an excellent 

performance as catalyst support for Ru nanoparticles in two dif-

ferent hydrogenation reactions. 

Figure 6. Catalytic performances of Ru/ZSM-5 zeolite catalysts 

with as-prepared ZSM-5 and commercial ZSM-5 zeolites. Reac-

tion conditions: (a) 70 ℃ for 6 h in water at H2 for hydrogenation 

of levulinic acid. (b) 120 ℃ for 2.5 h in water at H2 for hydro-

genation of glucose. 

CONCLUSIONS 

ZSM-5 with tuneable Si/Al ratios were successfully synthesized 

using a facile, green and efficient solvent-free method with only 

three starting reagents and without seed crystals. The Al precursor 

used in the experimental procedure is very important and can 

significantly influence the ratio of Si/Al in the final ZSM-5 mate-

rial. Investigation into the mechanism of crystallization confirmed 

that the F- anion must be in close proximity to the C12H28N+ cati-

on for the ZSM-5 crystallization to occur. It was also determined 

that the anionic F- coordinates with Al3+ species, forming hexa-

coordinated “F-Al-O-Si” species, which we consider drives the 

formation of the tetrahedral units of zeolitic framework. We hope 

that identifying the important role of the anionic F- in this proce-

dure will pave the way for the rational design of other structure-

directing agents for the synthesis of zeolites. 
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Graphical Abstract 

 

Novel seed-free and solvent-free synthesis of MFI zeolites with tuneable Si/Al ratios (18-∞) was 

achieved herein. The option of the Al precursor used can significantly influence the ratio of Si/Al in the 

final ZSM-5. The key role of F- was that forming 6-coordinated “F-Al-O-Si” species drove the for-

mation of tetrahedral units in the zeolitic framework during crystallization. 

 


