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Deep Learning Hyper-parameter Optimization for
Video Analytics in Clouds

Muhammad Usman Yaseen, Ashiq Anjum, Omer Rana and Nikolaos Antonopoulos

Abstract—A system to perform video analytics is proposed
using a dynamically tuned convolutional network. Videos are
fetched from cloud storage, pre-processed and a model for
supporting classification is developed on these video streams
using cloud-based infrastructure. A key focus in this work is
on tuning hyper-parameters associated with the deep learning
algorithm used to construct the model. We further propose
an automatic video object classification pipeline to validate
the system. The mathematical model used to support hyper-
parameter tuning improves performance of the proposed pipeline,
and outcomes of various parameters on system’s performance is
compared. Subsequently, the parameters that contribute towards
the most optimal performance are selected for the video object
classification pipeline. Our experiment-based validation reveals
an accuracy and precision of 97% and 96% respectively. The
system proved to be scalable, robust and customizable for a
variety of different applications.

Index Terms—Video Analytics, Cloud Computing, Automatic
Object Classification, Deep Learning

I. INTRODUCTION

V IDEO analytics plays a vital role in detecting and
tracking temporal and spatial events in video streams.

A number of pre-installed cameras, as shown in figure 1,
produces video data. This data needs processing to generate
useful clusters such as classification and tracking of a marked
person. As shown in figure 2, video data captured from
different cameras can be used to locate a person of interest.
The mapping of the person is then associated with particular
locations visited along with the time spent at each location.
The large amounts of data makes it nearly impossible for
human operators to manually process this data.

Deep learning based Video analytics systems can involve
many hyper-parameters, including learning rate, activation
function and weight parameter initialization. A trial-and-error
approach is mostly followed in selecting these parameters,
which makes it time consuming and at times may provide
inaccurate results.

To overcome these challenges, we present a system for
object classification from multiple videos. We propose hyper-
parameter tuning through a mathematical model to achieve
higher object classification accuracy. The mathematical model
aids in observing the hyper-parameter outcomes on overall
performance of the learned model. Values of the hyper-
parameters are dynamically varied and appropriate parameters
are selected.

We have first performed object extraction which are then
scaled and normalized. Each video frame is scaled at a size of
150× 150. During our experiments, it was observed that deep

learning networks perform better when input data is provided
in the normalized form.

The system performs training of the model on multiple dis-
tributed processors by utilizing cloud infrastructure. Multiple
cloud nodes are used for partial model training. The results
from each partial model are then collected at the master.
This results in the reduction of the overall training time. The
selection of appropriate normalization scheme with gradient
descent approach and learning rate helps to move the model
score of the system towards stability during training.

We have adapted iterative reduce, an extended form of map-
reduce paradigm to perform training quickly and efficiently.
The parallel and distributed training also process data rapidly.
The apache spark cluster is tuned for maximum resource
utilization. The proposed system is customizable in terms
of scalability i.e. nodes can be added or removed with the
addition or deletion of videos.

The evaluation of system is performed on a 100GB video
dataset. We present a video object classification pipeline to
evaluate the proposed system in which objects of interest are
located. We have adopted the techniques from data augmen-
tation including rotation, flip and skew for training due to the
limited labeled data for application pipeline. More training
data leads to higher accuracy for the classifier by reducing
over-fitting and exposing the network to more training sam-
ples. Another advantage of applying these transformations is
that they make the classifier invariant to typical transforma-
tions in the target object which is being located in the video
streams.

We have shown that the proposed system performs object
classification with high accuracy and we demonstrate experi-
mentally that the distributed training with iterative reduce for
automatic video analytics is a promising way of speeding up
the training process. After training, the classifier can be stored
locally and uses a match probability to classify objects.

There are mainly three contributions in the paper. (i) we
devised a mathematical model to observe the outcomes of
various hyper-parameter values on system performance. A
comparison of different hyper-parameter values has been made
and the parameters which give the most optimal performance
are selected; (ii) we scaled and configured the (Apache Spark)
cluster for parallel model training; (iii) we propose an auto-
matic object classification pipeline to support large scale object
classification in video data.

The organization of the paper is as follows: Section II
details the related work. Section III explains approach used in
carrying out video analysis, using a CNN and hyper-parameter
tuning for such a network. Section IV explains the architecture
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Fig. 1: Video Capture Infrastructure Fig. 2: Mapping of Marked Person

and implementation used to realise our proposed system. Sec-
tion V describes experimental setup. Results and conclusions
are provided in Section VI and Section VII respectively.

II. RELATED WORK

Recent video analytics systems often use shallow net-
works and hand crafted features to perform object classifica-
tion[30][31]. These hand crafted features are combined to gen-
erate larger features. These larger features provide an estimate
of appearance and motion information of objects in the video.
These larger features are not suitable for object classification
from large video data. [1] proposed a system using GPUs to
reduce the computational complexity involved in video stream
decoding and processing. An operator could specify the video
file and search criteria to a client program, video analytics is
then performed on the cloud and results are returned back
to the operator after some time. However, this work also
involved the use of a shallow (learning) network and produced
high dimensional feature vectors. Deep learning networks have
emerged as influential tools for solving complex problems
such as medical imaging, speech recognition, classification and
recognition of objects [23][24][25][26][32]. These networks
are capable to perform classification and recognition on large
scale data as compared to shallow networks but require more
computational resources for training. It also poses many other
challenging tasks like hyper-parameter tuning and increasing
times for training.

Hyper-parameter optimization has been an area of discus-
sion over the years [17] and mainly included racing algorithms
[18] and gradient search [19]. It is now shown that random
search is better as compared to grid search. The Bayesian
optimization methods can perform even better than random or
grid search. Some of the researchers also proposed methods
to perform automatic hyper-parameter optimization. The most
common implementations of Automatic Bayesian optimization
are Spearmint [20], which uses a Gaussian process model (GP)
[21]. Also, Tree Parzen Estimator (TPE) [2], which generates a
density estimate of each hyper-parameter. These methods have
shown competitive results but their acceptance is hampered
because of high computational requirements and performs best

for problems with few numerical hyper-parameters. On the
other hand, the hyper-parameter optimization done manually
by human operators is less resource intensive and consumes
less time as compared to automated methods. The evaluation
of a poor hyper-parameter setting can be quickly detected by
human operators after a few steps of the stochastic gradient
descent algorithm. They can quickly judge that network is
performing bad and can terminate the evaluation.

A number of convolutional neural network models have
been proposed in the recent past. Szegedy et al. [3] proposed to
modify the CNN by changing the end layer of the network with
regression. This modification resulted in the average precision
of 0:305 over 20 classes. As opposed to Szegedy’s proposed
model, Girshick et al. [4] adopted a bottom-up region based
deep model called R-CNN. The proposed model generated two
thousand region proposals and a CNN was used for feature
extraction from each region which were then classified by
SVMs. An improvement of 30% in accuracy was observed
but it was slow as training was a multi-stage pipeline. Ross
Girshick further improved their method and proposed a method
called Fast R-CNN [5] to detect objects rapidly. This method
reported higher detection accuracy and performed training
in a single stage using a multi-task loss. Disk storage was
also not required as it was in the case of R-CNN. Shaoqing
Ren et al. [6] further improved Girshick’s work and proposed
Faster R-CNN and reduced the computation time. They also
combined Fast R-CNN and RPN by sharing their convolutional
features into a single network. This method outperformed
both R-CNN and Fast R-CNN on publicly available image
datasets. Joseph Redmon et al. [7] also presented YOLO,
which could detects objects in one evaluation of CNN. It
resizes the images to 448 x 448 and executes a single pass
of CNN on the image to detect the objects and outperformed
R-CNN. However, all these works have been proposed to
perform detection and classification tasks on still images. It
is more likely that leveraging these methods for videos can
be limited in scope because the objects cannot be in the good
position in all video frames. Especially under uncontrolled and
complex conditions, where we can have blurring of objects,
varying poses and illumination conditions, existing approaches
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Fig. 3: Workflow of the Proposed Network

provide false positive detections, lack accuracy, and show less
resilience to these changing conditions.

Limited recent work has investigated video classification for
multimedia data using CNN. Approaches that do exist lack
automation and require human assistance to perform object
classification. The investigation of behavior that how it impacts
hyper-parameter selection is scarce in recent literature. We
provide an analysis of these parameters and present the optimal
tuning parameters.

Also, existing deep learning-based methods use CNNs
with some tweaked algorithms to perform multi-object de-
tection/classification, leading to their own limitations. Ap-
proaches for multiple object classification in an image often
use object detection algorithms and CNN is executed on top
of these – acting as a means to aggregate multiple filters. A
sliding window is often used to determine where the objects
of interest are in the form of a bounding box, which contain
the object of interest. A CNN is executed on top of these
object detectors and all the bounding boxes are passed to the
CNN to do object classification. This is extremely slow to
run on large sized images or video frames. Even algorithms
such as selective search, and faster variants are slow for video
sequences. R-CNN [3] generally proposes about 2k regions
and on each of these regions a CNN will run and extract
high level features to do classification. These region-based
proposals also tend to be extremely slow to execute. Also,
multi-stage training is required to run the model.

We perform multi-object detection (faces of different indi-
viduals) through a Haar cascade classifier. Detected objects
are treated as independent objects after extracting them from
video frames. The problem considered in this manuscript is to
process a large number of video streams in order to locate
objects of interest. We are therefore dealing with different
individuals captured at different locations, across different
intervals of time within a large number of video streams. We
therefore do not have intra-class variation (as we have same
class in terms of persons) but we have inter-class variation
(different individuals) in our dataset.

III. VIDEO ANALYSIS MODEL

We present a system using CNN to perform automatic
object classification. We present our approach in this section
and represent the system using a mathematical model. The

mathematical modeling of the system aids in tuning and
training of the system.

The proposed system for video analytics is based on
decoded video streams. Initially all the video streams are
encoded with H.264 encoding scheme to minimize the storage
space capacity. The video streams are decoded to split them
in video frames. For a stream of 120 seconds length, 3000
video frames will be generated. The analysis is performed on
these frames. This approach enables the independent analysis
of video frames from each other and leads to high throughput
and scalability on the cloud resources. The training set is given
by;

“Training DataSst X = x1, x2, . . . xn” (1)

where x1, x2 . . . are decoded frames. The detection of desired
object from whole frame and its extraction through cropping
is an important preprocessing step for video analysis as shown
in figure ??. This shortens the processing by eradicating those
areas from frames which do not contain objects. Haar cascade
classifier [8] is used for the detection of objects from video
frames. The haar cascade classifier uses haar features which
are generated from the objects in video frames to perform
detection. The detected objects are then extracted from frames.
These extracted objects are fed into the processing pipeline of
the deep network to perform object classification. A labeled
frame is given as (x; c). The region of interest is represented
as;

“R(x0, y0 xn, yn)” (2)

We extract the detected object patch which includes the
surroundings of the object. Each video frame is scaled at
a size of 150 × 150. This size has been selected according
to the hyper-parameter tuning of the deep network based on
the experimentation. The objects are further normalized as
the deep networks works better when input is provided in
normalized form. It is also to be noted that during the decoding
and detection step, only those video frames are retained which
contained the objects in them. All the video frames which do
not possess any object are discarded. The normalized extracted
objects are given as:

“Xnorm = f(K(x); K(y))|(x; y)” (3)

We have performed transformations including translation
and skew to increase the training data. The greater the training
data, the more will be the accuracy of the classifier. This tech-
nique proved to be very effective in feature learning algorithms
since the classifier is exposed to much more training data with
a variety of transformations[27][28][29][15]. This approach
also reduces over-fitting and helps improving accuracy of the
trained classifier.

Another advantage of applying these transformations is that
they make the classifier invariant to typical transformations in
the target object. These transformations in the target object
can present themselves as serious challenges during object
classification process and can drop the accuracy. So there is
no need to handle these challenges separately as done in many
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previous works [9][10][11]. However, it should be noted that
the classifier will only be invariant to those variations in the
target object on which it has been trained. Handling all of
them such as occlusion is out of the scope of this paper.

Let ‘T’ denotes the transformations then the training dataset
is given by;

“TXnorm = TXnorm1, TXnorm2, . . . TXnormn” (4)

Now when we have the dataset generated, we train the convo-
lutional neural network. The convolutional and sub-sampling
layers of the convolutional neural network are represented as;

“Convk, p = g(xk, p ∗Wk, p+Bk, p)” (5)

“Subk, p = g(↓ xk, p ∗ wk, p+ bk, p)” (6)

here g(.) is the ReLU activation function. Weights are repre-
sented by ’W’and biases are represented by ’b’ respectively.
‘ * ‘ represents the two dimensional convolution operation.
The inputs are downsampled in case of sub-sampling layer.
The output from each layer represents a feature map. Multiple
feature maps are extracted from each layer which is helpful
in detecting multiple features of objects such as lines, edges
and contours.

Instead of using the standard hyperbolic tangent non-
linearity, we adopted ’ReLU’ as suggested by [12][16]. ReLU
is much more appropriate than tanh especially in case of
bigger datasets as the network trains much faster. Traditional
hyperbolic tangent non-linearity does not allow training the
system on bigger datasets. The ReLU function has a range
of [0,infinity], so it has the capability to model positive real
numbers. The advantage of using ReLU is that it does not
vanish as the value of ‘x’ increases as compared to sigmodal
function. The max function is;

“1 if x > 0; 0 if x < 0” (7)

In order to aid generalization we adopted Local Response
Normalization. This normalization scheme mimics the be-
havior of real neurons and creates a competition amongst
neuron outputs for big activities. Max pooling is used to
perform sample based discretization or downsampling of an
input representation (feature maps from convolutional layer in
our case). Max pooling reduces the dimensionality, decreases
the amount of parameters to learn and reduces the overall cost.

L2 regularization has been added to reduce over-fitting. It
tries to penalize network weights that are large. It is given by;

“λ2
∑
i

θ2i (8)

where theta represents the network weights and lambda is
lagrange multiplier which decides how significant this reg-
ularization should considered to be.

The deltas for the layers are;

“4Wt, l = LearningRate

F∑
i=1

(xi ∗Dh
i ) +mn4W(t−1,l)”

(9)

Similarly;

“4Bt, l = LearningRate

F∑
i=1

Dh
i +mn4B(t−1,l)” (10)

Similarly;

“4Wt, l = LearningRate

F∑
i=1

(↓ xi ∗Dh
i ) +mn4W(t−1,l)”

(11)
Also;

“4bt, l = LearningRate

F∑
i=1

Dh
i +mn4b(t−1,l)” (12)

The loss function is;

“L(x) = LearningRate
∑

xi−>X

∑
xi−>Ti

l(i, xiT )” (13)

here l(i,xT) is loss function for convolutional neural network
that we are trying to minimize.

SGD is represented as;

“Wt+1 =Wt − αδL(θt)” (14)

The momentum term is represented as;

“Vt+1 = ρvt − αδL(θt)” (15)

“Wt+1 =Wt + Vt+1” (16)

The softmax layer is given as;

“l(i, xiT ) =M(ei, f(xiT ))” (17)

IV. ARCHITECTURE AND IMPLEMENTATION

The proposed video analysis approach is compute intensive
and operates on large datasets. We have tackled this problem
by optimizing the code, tuning the hyper-parameters properly
and introducing parallelism [33] by using spark. Parallelism
is achieved by distributing the dataset into small subsets and
then passing over these subsets of data to separate neural
network models as shown in figure 4. The models are trained
in parallel and the resultant parameters for each model are
then iteratively averaged and collected at the master node. This
approach helped in speeding up the network training even on
larger datasets.

The training process starts by first loading the training
dataset into the memory. The master node which also acts as
the spark driver loads the initial parameters and the network
configuration. The network configuration of our spark cluster
and deep learning model is shown in Table 1: The dataset is
partitioned in a number of subsets. This division is dependent
on the configuration of the training master. These subsets
of data are distributed to various workers along with the
configuration parameters. Each worker then performs training
on its allocated dataset. Once the training by all the workers
is completed, the results are averaged and returned to master
which has a fully trained network which is used for classifi-
cation.

The master node of spark loads the initial network config-
uration and parameters. The master is termed as driver node
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Fig. 4: Architecture of Distributed Cluster

TABLE I: Configuration of Spark Cluster and Deep Network

Spark.driver.cores 4 No. of layers 8
Spark.driver.memory 8GB Average Rate 1
Spark.executor.memory 8GB Optimization GD
Spark.executor.cores 4 Activation ReLu
Spark.memory.fraction 4 LearningRate 0.0001
Spark.serializer kryo Regularization L2

as well because it is responsible to drive other nodes of the
cluster by distributing parameters among them. It also contains
the knowledge that how data is to be divided. On the basis
of data division parameter, the dataset is partitioned into the
subsets. These subsets along with the configuration parameters
are then distributed among worker nodes. Each worker works
on a partial model and the results are averaged together with
the help of iterative averaging. The master node then contains
the trained classifier.

The separation of training data into subsets and then training
the model with these subsets of data by averaging parameters
is a feasible approach for our system because we operate with
limited worker nodes in our cloud and the parameters for
estimation are also small. We use the same model for each
worker node but train them on different data shards (mini-
batches). We then obtain the gradient for each split of the
mini-batch from each model and compute the overall average
using parameter averaging. This technique works faster for
small networks as in our proposed system and is ideal for
scenarios involving matrix computations which happens quite
often in convolutional neural networks.

The compute cluster consists of one master node and
eight worker nodes. The averaging frequency is set to 1
for all the experiments. The dataset comprising the size of
100GB is divided into various subsets of data. Each subset
is further divided into various minibatches depending upon
the configuration. Training is performed on each subset by
allocating each minibatch to each worker. Since the dataset is
large in size it was not possible to load the whole dataset into
memory at once. So we have first exported the minibatches
of datasets to disk (HDFS) known as dataset objects. The
datasets are exported in batched and serialized form. We
have used kryo serialization to perform serialization of our
dataset. This approach of saving the dataset to disk is much
more efficient and faster as compared to loading the whole
dataset in memory. This approach consumes less memory and
reduces split overhead. The dataset object has a number of
examples based on the size of dataset object. Kryo serialization
takes least amount of time to serialize objects and improves
performance. It can serialize objects much quickly and effi-
ciently and offers more compact serialization than Java. The
serialization framework provided by java has high CPU and
RAM consumption which makes it inefficient for large scale
data objects.

This is also quiet important to set the rate of parameter aver-
aging. If this is too low, this will create overhead in parameter
initialization and will cause delay in network communication.
Similarly, if it is high, it will degrade the performance. In
the proposed video analytics system, the good performance is
obtained with 16 mini-batches. These mini-batches are started
in an asynchronous fashion which reduces the delay. The data
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repartitioning is also a critical parameter to be defined. It
defines when data is to be repartitioned and plays an important
role in utilizing all the resources of the cluster efficiently. A
value of 0.6 is chosen for this.

The locality configuration is also defined as the proposed
algorithm has high demand of computation, so single task per
executor is executed. It is therefore much suitable to shift
data to executor which is free. The default configuration of
spark waits for a free executor. This requires the data to be
copied across the network. Another important note is that we
have avoided the allocation of memory on JVM heap space by
passing pointers for various numerical tasks. It is not required
to load the data from JVM heap to execute operations on it;
neither has it required data transmission (processed results)
back to JVM. This helps to avoid the data transfer time and
a decrease in overall execution time of the system. This also
avoids memory overhead required for each task.

We have employed iterative mapreduce instead of simple
mapreduce for our proposed application. Iterative mapreduce
is an advanced form of mapreduce in which multiple passes
of the mapreduce operation are performed. Single pass does
quite well for the application which are not iterative. As our
application is built upon deep learning algorithm, it is highly
iterative and makes full use of the iterative map-reduce. A
sequence of map-reduce operations are performed in which
each mapreduce operation is performed in cascaded fashion.

In the implementation phase, the video dataset is first loaded
into the memory. It is preprocessed so that it can be further
used for training the deep multilayer network. The preprocess-
ing starts with frame decoding using FFMPEG library [13].
The objects of interest are then detected and extracted from
the video frames by using haar cascade classifier. Haar cascade
classifier is built on top of haar features which are generated
from the objects in video frames to perform detection.

The objects which are extracted necessitate the use of N-
dimensional arrays which could hold the pixel values. We have
made the use of nd4j for java [14]. It consumes minimum
memory and supports fast numerical computing for java.
The loading of data into the memory and training of the
network are handled by two separate processes. This makes
the data loading process simple and is supported by the nd4j
library. The data after loading into the memory is normalized.
This normalization of data helps to train the neural network
properly as it is based upon gradient descent optimization
approach for network training. The gradient descent approach
having their activation functions in this range helps to improve
the performance.

A dataset iterator is defined to iterate over the data present
in the memory. The iterator fetches the data from memory in a
vectorised format. The iterator moves on to the dataset objects
which contains multiple training examples along with their
labels. An n-dimensional array is created to store examples
and labels. The high volumes of data makes it infeasible to
load the data into the memory at once. So many minibatches
are created. These minibatches help to tackle the memory
requirements problem. A value of 12 for the minibatch is used
in our system.

The value of learning rate has been selected to be 0.0001.

We have selected this value carefully on the basis of exper-
imentation. We observed during the experiments that a high
value of learning rate can cause divergence and the divergence
can stop the learning. On the other hand, setting learning rate
to a small value causes slow convergence.

V. EXPERIMENTAL SETUP

The details of our experimental setup which is utilized to
implement the system is presented in this section. The main
focus of the results generated by using this experimental setup
is accuracy of the proposed algorithm, scalability, precision
and performance of the system. The accuracy of the system
is measured by precision, Recall and F1 score. The scalability
and performance is demonstrated by analyzing aspects of the
system including transfer time of data to cloud node and the
overall analysis time.

The proposed architecture for analysing video streams con-
sists of cloud resources. The compute nodes have multi-cores
for processing in which most of the video analytics operations
are performed. In order to execute the experiments, we con-
structed a cluster of eight nodes on the cloud infrastructure.
The multiple instances running on the cloud have OpenStack
[22] with ubuntu version of 15.04. This cluster is used to
deploy and evaluate the proposed system. The configuration of
the cluster is as follows: Each node in the cluster possesses a
secondary storage of 100 GB. There are 4 VCPUs running at
a frequency of 2.4 GHz. The total main memory has a size of
16 GB. The results generated by these experiments will help
to deploy the system on a much bigger infrastructure as per
requirements of an application.

The video dataset which is used to train and test the system
is generated in a constrained environment. The streams are
captured with individuals facing towards the camera. However,
it also contains frames which have individuals with side,
front and rear pose. Most of the video streams do not pose
illumination or other challenges. The test dataset comprises of
88,432 video frames.

The input video streams are H.264 format encoded. The
frame rate for each video stream in our database is 25 fps. The
data rate is 421 kbps and the bit rate of video streams is 461
kbps respectively. These video streams are decoded to produce
separate video frames. The video stream of one minute of
length generates a decoded frame set of 1500 frames. The
data size of each video frame is 371 kb.

"Apache Spark" is adopted for parallel and distributed
training of the deep network. The video dataset is loaded
in spark which executes executors to perform the network
training. The dataset objects are used by the executors to
execute training of the network. The iterative MapReduce
framework utilized in this work executes multiple analysis
tasks. These analysis tasks are executed in multiple stages.
The analysis tasks are rescheduled if a task failure occurs.

The spark context is utilized to load the video dataset
and is then stored into multi-dimensional arrays. The multi-
dimensional arrays represents the data in the form of tensors
which are then passed through multiple layers for training. The
starting layer of convolutional neural network has a dimension
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Fig. 5: Schematic Diagram of the Proposed Network

of 150 x 150 x 1. It has 96 kernels in it. The stride of the
kernels is set to be 4 x 4 with the kernel size of 11 x 11 x
1. The layer following the first convolutional layer has 256
kernels in it with a stride of 2 and has a size of 1 x 1. The
remaining layers has a total of 284 kernels in them. These
convolutional layers operate on nonZeroBias.

There is a max-pooling layer next to the convolutional layers
with a size of 3 x 3 as shown in figure 5. The convolutional
layers and pooling layer are followed by the fully connected
layers. The fully connected layers have a total of 4096 neurons
in them. The kernels and neurons of the subsequent layers has
a connection with the previous layers. We have also added
local response normalization layers, max pooling layers and
added ReLU as non-linearity layer.

VI. EXPERIMENTAL RESULTS

In this section we present the results of the proposed
system using the experimental setup detailed in section V.
We first analyze the results generated by tuning the hyper-
parameters of deep model to various values and propose the
parameters which could potentially produce best results.The
trained system on the proposed parameters is then evaluated
with different performance characterization including accu-
racy, scalability and performance of the system. The Precision,
Recall and F1 score are also considered as the performance
characterization. The scalability of the system is analysed by
measuring the time to transfer data to cloud and overall time
of analysis of data. The results from the object classification
pipeline are presented at the end of the section.

A. Hyper-parameter Tuning

There are a number of parameters which can be tracked
during the training of a deep network. These parameters pro-
vide intuitions about the settings of different hyper-parameters
and help to make a decision that whether the setting should
be changed in order to have more efficient learning. The
parameters are tracked and represented in the form of graphs
over multiple time stamps in order to observe the trend in
the behavior of the system. The x-axis of the plot in figure

Fig. 6: Model Scores

6 represents iterations and the number of iterations depends
on the settings of batch size. While the loss function value
L(x) = LR

∑
xi−>X

∑
xi−>Ti

l(i, xiT ) of current mini-
batch is depicted on the y-axis of the plot in figure 6. The
loss function value is evaluated during the forward pass of the
back-propagation on the individual batches. The grey line in
the graph represents the running average of the loss on each
iteration. It gives a better visualization to analyze the trend
in the graph of the loss function. The graph depicts that the
learning rate is tuned properly as a decreasing trend in the
graph is observed after each iteration over time. We kept on
changing the learning rate unless score became stable. The
learning rate has been varied to many different values and
three of them le-2, le-4 and le-6 are shown in the graph. Le-
2 proved to be good for the divergence of learning curve as
shown in figure 6.

The proper normalization of the data is a major factor in the
divergence of the learning curve. It is also an indication that
the L2 employed with SGD "Wt+1 =Wt−αδL(θt)" is good
adopted scheme. Here "α" varied to le-2, le-4 and le-6. The
initialization of weights has been made random. The bottom
two graphs with a learning rate of le-4 and le-6 remained
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Fig. 7: Parameter Ratios

Fig. 8: Layer Activations

unable to show the decreasing trend and followed a stable
state over multiple iterations. Both the graphs remained above
1.0 on y-axis.

Another important parameter which can be used to track in
order to have an intuition about the efficient learning of the
system is the ratio of weights (updates). It is not beneficial
to track the raw gradients but the updates of the weights.
It can also be helpful to track this ratio for every set of
parameters. The parameter ratios are depicted in figure 7.
The trend in the graph indicates selection of a good learning
rate and proper initialization of network hyper-parameters. The
parameter weights are represented by different colored lines
in the graph. A high divergence of the parameters from -3 on
a log10 chart indicates that the parameters are not properly
initialized.

The layer activations of first layer utilized in our system
are depicted in figure 8. A stability in the layer activations
graph can be observed clearly which shows that the network
is stable. It is also an indication of the proper initialization of
weights of the layers. The regularization scheme i.e. λ2

∑
i θ

2
i

is well adopted. The convergence of ratio as seen in the graph
shows that the parameters are initialized correctly and are well
selected. The other lower graphs of figure 11 with lambda
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Fig. 9: Model Scores at Various Iterations

values do not show a stability trend.

B. Training on Tuned parameter values

We have trained the system on the proposed hyper-
parameters for our video object classification pipeline and
evaluated the performance. Figure 9 shows the value of loss
function at various iterations on the current minibatch. The
graph is drawn against training scores of the network and
training iterations. It can be seen that the graph converges
which shows that the learning rate LR = 0.0001 is a well
selected learning rate. The decreasing trend of the graph is
also an indication that "L2 normalization scheme λ2

∑
i θ

2
i "

with "SGD Wt+1 = Wt − αδL(θt)" is a good approach for
the training of our network. A bit of a noise in the graph is
observed but it is very low variation in a small range and is
not an indicative of poor convergence of learning.

Figure 10(a), figure 10(b) and figure 10(c) show the standard
deviations of layer activations, gradients and updates of param-
eters. A stable trend is observed in this graph which shows that
the system is capable of coping with the problem of vanishing
or exploding activations. It also shows that the weights of the
layers have been well selected and regularization scheme is
properly adopted.

The histogram of layer parameters and layer updates are
depicted in Figure 11 Figure 12 respectively. The normalized
"Gaussian distribution" can be seen in graphs. It shows that the
weights are properly initialized with sufficient regularization
present in the system. The layer updates graph also shows that
the system is not exposed to vanishing gradient because of the
utilization of non-linearity h = max(0, a).

Figure 13(a), figure 13(b) and figure 13(c) show the stan-
dard deviations of layer activations, gradients and updates of
parameters for the first convolution layer of the network. The
proposed system made use of off heap memory and most of
the memory is not allocated on the JVM heap but outside
of the JVM. This helps to perform the numerical operations
faster as data needs not to be copied to and from the JVM
but pointers can be passed around for numerical computations
avoiding data copying issue.
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Fig. 11: Histogram of Layer Parameters

C. Performance Characterization and Scalability of the Sys-
tem

The accuracy of the proposed system is measured by the
following performance characterization: recall, precision (pos-
itive prediction value) and F1 score. The test dataset comprises
of 88,432 video frames in total. The precision is turned out to
be 0.9708. The recall of the system is recorded to be 0.9636.
And the F1 score is found to be 0.9672. The recall and the
F1 score are calculated by the following equations:

′′Recall = TP/(TP + FN)′′ (18)

′′F1 = 2TP/(2TP + FP + FN)′′ (19)

It was observed from the results that there is also some
miss-classification of the video frames as well. Few objects are

Fig. 12: Histogram of Layer Updates

recorded as false positives in the system. There can be number
of things which could be the reason for the miss-classification.
Some miss-classifications could be due to the variance in the
pose, illumination conditions and blur effects. As the training
of the classifier was performed on the dataset which was
captured under strict controlled conditions, high variance could
lead to the miss-classification of various subjects.

The scalability is tested by executing it on distributed
infrastructure over multiple nodes. The system is evaluated
mainly on the following parameters: i) transfer time of data
to cloud nodes ii) total time of analysis iii) analysis time with
varying dataset sizes. Spark executes many executors and these
executors accesses a RDD object in each iteration. Spark has
a cache manager which handles the iterations outcomes in
memory. If the data is not required anymore, it is stored on
disk.
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Each video stream in our database has a frame per second
rate of 25. These videos are decoded to produce separate video
frames. The total number of decoded video frames is directly
proportional to the duration of video stream being analyzed.
The video stream of one minute of length generates a decoded
dataset of 1500 frames.

The size of the input dataset varies from five gigabytes
to hundred gigabytes. The large number of frames are bun-
dled with the help of a batch process. The bundled frames
are shifted to cloud infrastructure for processing. The time
required to bundle the frames is proportional to the input
video frames size. The dataset ranging from ten gigabytes
to hundred gigabytes requires a bundling time of 0.25 to 3.8
hours. Inclusion of larger data increases the data bundling time.

The bundled video frames are then transferred to cloud for
analysis. There are many factors on which the transfer time
to cloud depends including bandwidth of the network, block
size and also the amount of data which is to be transferred.
An estimated transfer time for different data sizes as shown in
Figure 14. It was observed that the transfer time for a dataset
size of twenty gigabytes to hundred gigabytes varied from 0.36
to 2.18 hours . The data transfer time has also been measured
with a block size of 256MB and its effect is shown in figure
14. In order to measure the time of network training, multiple
tests are carried out on multiple dataset sizes. We have then
calculated the average execution time of each dataset size and
plotted in Figure 15. It was seen from the results that the
increase in dataset size directly increases time of execution.

D. Video Object Classification Pipeline

The trained classifier from cloud is saved locally and is
further used to locate the objects of interest. The target object
which is to be located from the video streams is passed through
the trained classifier to perform classification. The target
object which is to be classified is passed through the same
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Fig. 16: Video Object Classification Pipeline

preprocessing steps to make it appropriate for the classifier. It
is also scaled and normalized to make it appropriate for the
classifier.

The classifier returns the probabilities of the possible labels
but not the labels itself. The labels of all the objects present
in all the video streams were already stored in the database
beforehand. The classification process ends up in generating
the probabilities of the matched objects. The object with the
highest probability indicates the classification of the desired
object which was being searched from the video streams.
Very low probabilities against all the objects indicate that the
target object is not present in all of the video streams present
in the database.Figure 16 depicts the phenomenon of object
classification.

Figure 17 depicts the probabilities of some of the objects
generated by the classifier. The marked objects which were
fed into the trained network are listed on the right hand side
of the graph. We have shown results from 8 different objects
for this set of experiments. The probabilities generated by the
classifier against each object are shown in different columns
of the table. The probabilities near to 1 depict a closer match
of marked object and the probabilities close to 0 depicts the
unavailability of objects in the video stream database.

It can be seen that the trained classifier generates a high
probability against the marked object if its training instances
are present in the database. The other labels of objects come up
with a low probability value. Figure 17 depicts the graphical
representation of classification procedure. The 10 experiments
are represented on each index of the x-axis. Different probabil-
ities generated by each experiment are represented on y-axis

Fig. 17: Classification of Marked Object

of the graph.

VII. CONCLUSION AND FUTURE WORK

An object classification system is developed and presented.
The system is built upon deep convolutional neural network
to perform object classification. The system learns different
features from many video streams and performs training on
an in-memory cluster. This makes the system more robust to
classification errors by rapidly incorporating diverse features
from training dataset.
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The system is validated with the help of a case-study using
real-life scenario. Numerous experiments on the testing dataset
proved that the system is accurate with an accuracy of 0.97
as well as precise with a precision of 0.96 respectively. The
system is also capable of coping with varying number of nodes
or increased volumes of data. The time required to analyse
the video data depicted an increasing trend with the increasing
amount of video data to be analysed in the cloud. The analysis
time is directly reliant on the amount of data being analyzed.
The sheer volumes of video data necessitate additional time
to carry out object classification. The analysis time can be
decreased with the addition of nodes in the infrastructure.

We would like to leverage and optimize other deep learn-
ing models in future including reinforcement learning based
methods. The reinforcement learning will help to classify other
objects as well like vehicles without necessitating any metric
learning stage. The development of a toolkit which could
automate the process of hyper-parameter optimization will be
included as part of the improvements in the system.

We also intend to develop a rule based recommendation
system for cloud based video analytics which will provide
recommendations for hyper-parameter tuning on the basis of
input dataset and its characteristics. It will also take into
account the configurations of underlying in-memory compute
cluster and will suggest appropriate tuning parameters for both
deep learning model and in-memory cluster.
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