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Abstract 

We report a set of theoretical calculations designed to examine the potential of model uranyl 

complexes to participate in hydrogen- and halogen-bonding. Potential energy scans for the 

interaction of [UO2Cl2(H2O)3] and [UO2(NCSe)2(H2O)3] with a single water molecule demonstrate 

that uranyl is a weak hydrogen bond acceptor, but that equatorially coordinated water is a strong 

hydrogen bond donor. These predictions are supported by a survey of contacts reported in the 

Cambridge Structural Database. At the minima of each scan, we show that the interaction energy 

is only weakly dependent on the choice of theoretical method, with standard density functional 

theory methods comparing well with coupled-cluster, MP2 and double-hybrid DFT predictions. 

Geometry optimisation of a 1:1 uranyl:water complex results in a cyclic structure, in which 

vibrational frequencies, atoms-in-molecules and natural bond orbital analysis support the 

weakness of U—Oyl as acceptor. The origin of this behaviour is traced to the electronic structure of 

uranyl, and in particular covalency in the U—Oyl bonds resulting from donation into formally 

empty 5f and 6d orbitals on U. 
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Introduction 

The chemistry of the uranyl ion, once dominated by its aqueous chemistry, has recently expanded 

into the field of supramolecular chemistry.1 Different dimensionalities in the formation of the 

hybrid materials are now possible though the control given by crystal engineering. Judicious choice 

of equatorial ligands can give distinct and easily modifiable structures: excellent examples are 

shown by the use of carboxylates.2 Simple oxalates can give dimeric species or higher nuclearity3  

species to form chains; simple monofunctionalised carboxylic acids result in monodentate and 

bridging modes, while larger, more complex acids can yield MOF assemblies4 and polycatenated 

frameworks.5 Further methods for forming coordination polymers invoke the tendency for the 

hydrated uranyl ion to hydrolyse to form, sometimes unpredictably, oxo and hydroxo bridged 

systems. Other structural motifs can be formed from heterobimetallic uranyl coordination 

polymers.6  

Control of the geometry outside the coordinated equatorial ligands is more of a challenge for 

traditional coordination chemistry. Cation-cation interactions have been found to extend this 

dimensionality: selected examples include [UO2(NO2TA)2(H2O)] (NO2TA = 2-nitroterephthalic acid)7 

or the purely inorganic Cs4[(UO2)7(WO5)3O3].8 More recently the supramolecular chemists’ arsenal 

of non-covalent interactions have featured in uranyl crystal chemistry. Hydrogen bonding between 

a [UO2Cl4]2- anion and bipyridinium cations afford various topologies according to the nature of 

the cation.9 Pérez-Conesa et al used ab initio methods to show that binding of [UO2(H2O)5]2+ to the 

surface of clay materials is dominated by hydrogen bonds involving equatorial OH2 ligands as 

donors to O atoms in the clay.10 Much weaker hydrogen bonding via C—H…Oyl—U interactions,11 

sometimes via charge assisted hydrogen bonding,12 have been reported and can be used to 

selectively separate or sense the uranyl ion selectively from complex mixtures.13 Surbella et al 

show how NCS- ligands bound to uranyl lead to a wide range of non-covalent interactions, 

including hydrogen bonds, S···S and S···Oyl interactions,14 as well as S…H-OH hydrogen bonds that 

facilitate formation of infinite chains.15 Carter et al demonstrated that uranyl oxygens’ 

participation in halogen bonding interactions with iodine determines the 3D crystal structure and 

spectroscopy in a range of complexes.16 Recently, we showed that equatorial NCS- and NCSe- 

ligands give rise to a range of non-covalent interactions in the solid state, including 

chalcogenide…chalcogenide, U—Oyl…H—C and S(e)…H—C hydrogen bonding.17 

Following literature reports, including some from our groups, of the use of uranyl in supra-

molecular chemistry and molecular recognition, this work concentrates on the ability of uranyl 
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species to engage in non-covalent interactions, and in particular hydrogen- and halogen-bonding. 

In this work, we use ab initio and density functional theory (DFT) methods to explore potential 

energy surfaces for hydrogen and halogen bonding of model compounds, and to benchmark the 

performance of different theoretical methods in calculating geometry and energy of such 

interactions. To avoid complications in calculating and analysing data, we selected neutral model 

systems with no unpaired electrons, and hence minimal spin-orbit coupling: namely [UO2Cl2(H2O)3] 

and [UO2(NCSe)2(H2O)3]. Theoretical investigation of the actinides is well developed, but the 

choice of methodologies is important as erroneous results can stem from certain combinations of 

method and basis set. The suitability of DFT for ground and excited state properties of uranium 

compounds was recently demonstrated through careful benchmarking:18 our goal here is to 

provide a similar level of checking for non-covalent interactions. 

 

Methods 

Potential energy surfaces were calculated using the ORCA package19, using the small core 

ECP60MWB 60-electron ECP/basis set on U,20 and the def2-TZVP(-f) basis set on all remaining 

atoms.21 Using this basis set, counterpoise corrected binding energies were calculated using DFT 

(BP86-D3,22,23 B3LYP-D3,24 wB97X-D3,25 M06-2X26 and double-hybrid B2PLYP27) as well as ab initio 

(HF, MP228 and DLPNO-CCSD(T)).29 Further calculations used the 78-electron Lanl2DZ basis set/ECP 

on U,30 and/or the 6-31G(d,p) basis set on light atoms.31 Electronic properties were calculated 

using Gaussian09 at the M06-2X level with a basis set consisting of SARC-DKH all electron basis on 

U32 with def2-TZVP on all remaining atoms, with relativistic effects described using the Douglas-

Kroll-Hess approach.33 Atoms-in-Molecules analysis of the resulting all-electron densities used the 

AIMAll package,34 while NBO analysis was performed with NBO v3.0 within Gaussian09.35 

 

Results and Discussion 

Figure 1 shows the surface electrostatic potential of the two model compounds used: in both 

cases, relatively weak areas of negative potential (VS  -0.03 au) are present in the region of Oyl, 

along with deeper minima on equatorial ligands. In addition, equatorially coordinated water 

ligands show strong maxima (VS  +0.11 au) close to H. No evidence for -hole on Cl is observed, 

but this is more evident on Se (VS  +0.01 au). On this basis, we expect Oyl to act as a relatively 
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weak H-bond acceptor, but U-OH2 to behave as a relatively strong donor, and Se to engage in 

weak halogen bonding. 

 

 

 

Figure 1: Electrostatic potential VS of [UO2Cl2(H2O)3] (top) and [UO2(NCSe)2(H2O)3] projected onto 

0.001 au isodensity surface: red = -0.04 au, blue = +0.11 au. 
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To quantify these expectations, a series of potential energy scans was calculated. Figure 2 shows 

the first of these, in which a single water molecule donates a hydrogen bond to Oyl directly along 

the U—Oyl vector. (This is not necessarily the optimal U—O…H angle, but our chief goal here is to 

assess the performance of different methods without complication of possible interactions with 

equatorial ligands). These data confirm the expectation of a relatively weak hydrogen bond, with 

maximum stabilisation of around 10 to 15 kJ mol-1, depending on method, occurring close to 

R(O…H) = 2.10 Å. For comparison, the water dimer binding energy calculated at BP86-D3 level is -

20.0 kJ mol-1 at R(O…H) = 1.92 Å. The predicted O…H contact is also in agreement with the crystal 

structure of [UO2Br2(OH2)3], for which a U—Oyl…H distance of 2.029 Å was found.36 

 

 

Figure 2: U—Oyl…H-OH Potential Energy scans for [UO2Cl2(H2O)3] (at U—O…H = 180) 

 

Table 1: Counterpoise corrected binding energy at R(O…H) = 2.10 Å / kJ mol-1 

CCSD(T) MP2 HF BP86-D3 PBE-D3 B3LYP-D3 wB97x-D3 M06-2X B2PLYP 

-11.14 -11.55 -9.24 -15.79 -16.81 -16.44 -13.67 -12.61 -11.94 
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In order to further probe the strength of the H-bond, and also to better test the suitability of 

different methods, binding energy at R(O…H) = 2.10 Å was calculated with more methods, as 

reported in Table 1. All methods indicate the weakness of this hydrogen bond, between 50-75% of 

the binding energy of a water dimer. Taking DLPNO-CCSD(T) as a benchmark, it is evident that 

MP2 best reproduces this, with double-hybrid B2PLYP and meta-hybrid M06-2X also close. More 

conventional DFT methods with dispersion correction overestimate binding somewhat, with 

wB97x-D3 slightly better than BP86-D3, which in turn is rather better than B3LYP-D3. PBE-D3, 

which was recommended for geometries of uranium complexes,18 performs similarly to other 

conventional DFT methods. It is also apparent that correlation effects are small here, since the HF 

binding energy is within 2 kJ mol-1 of the CCSD(T) one.  

A further scan of the angular dependence of binding energy on U—Oyl…H angle is shown in Figure 

3, which reveals the optimal angle to lie around 125 before rising steeply at smaller angles, and a 

slight (ca. 1 to 2.5 kJ mol-1) increase in binding between 180 and 120. Here, DFT methods result in 

sharper differences between 120 and 180 than does MP2, although all methods agree on the 

general trend. 
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Figure 3: Potential energy scan of U—Oyl…H angle for [UO2Cl2(H2O)3] (at R(O…H) = 2.1 Å)  

 

A survey of the Cambridge Structural Database for U—Oyl…HOH contacts revealed 335 hits and a 

bimodal distribution with two average bond lengths at 2.06 and 2.61 Å (Figure 4). The former 

value is in excellent agreement with our theoretical predictions for the length of this hydrogen 

bond. Closer examination of Figure 4 shows a significant number of O…H contacts at 1.80 Å or 

even shorter. At this separation, Figure 1 shows that stabilisation is still significant, at between 5 

and 10 kJ mol-1: no contacts are observed at separations shorter than those for which we predict 

no stabilisation. The second maximum stems from further non covalent interactions, such as in the  

three-dimensional [N2C6H14]2[(UO2)6(H2O)2F2(PO4)2(HPO4)4]·4H2O, where the donor water 

molecule is also engaged in hydrogen bonding to the coordinated phosphate which lengthens the 

U-Oyl…HOH distance (dO…H = 2.57 Å),37 or from water molecules that are not directly in contact 

with Oyl, for example those coordinated to equatorial ligands or simply part of the crystal lattice. 

The distribution of U—Oyl…H angle is unimodal, peaking at 132.8o; again in broad agreement with 

theoretical predictions. There appears to be no statistical correlation between bond length and 

bond angle. 

 

 

 

Figure 4: Results of a Cambridge Structural Database search for U—Oyl…HOH bond distances (left) 

and angles (right).  

 

Figure 5 reports PES scans for equatorial U—O—H as donor and OH2 as acceptor. These show that 

this is a rather strong H-bond, with maximum stabilisation of around -30 kJ mol-1 at a separation of 

1.8 Å, i.e. shorter and stronger than in the U—Oyl…HOH and water dimer. At the optimal 

separation, binding energies with a wider variety of methods (Table 2) confirm this: the 
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benchmark DLPNO-CCSD(T) method indicates binding approximately 2.5 times stronger than in 

Table 1, and markedly stronger than in the water dimer. Again MP2 comes close to reproducing 

this values, and the correlation contribution to binding is small at 3.3 kJ mol-1. DFT methods also 

work well here: double-hybrid B2PLYP is again the best of these, but here BP86-D3 actually out-

performs more sophisticated methods. 

 

 

Figure 5: U-O-H…OH2 Potential Energy scans for [UO2Cl2(H2O)3] (at O…H—O = 180) 

 

 

Table 2: Counterpoise corrected binding energy at R(H…O) = 1.8 Å / kJ mol-1 

CCSD(T) MP2 HF BP86-D3 PBE-D3 B3LYP-D3 wB97x-D3 M06-2X B2PLYP 

-27.83 -29.22 -24.48 -30.88 -32.88 -33.24 -32.77 -32.62 -29.19 

         

 

Full geometry optimisation using BP86-D3 was then performed, starting from the minimum of the 

above PES scans, without any geometrical or symmetry constraint. This results in a cyclic structure 

containing U=O…H-OH and U-O-H…OH2 H-bonds, as shown in Figure 6. The former has R(O…H) = 

1.931 Å, i.e. markedly shorter than the minimum of the PES scan but still slightly longer than the 

equivalent distance in the water dimer. The U—Oyl…H angle is 120.0, very close to the minimum 

of the angular PES scan, while at O…H-O = 147.7 this H-bond is far from linear, presumably as a 
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result of formation of a second H-bond to equatorial water. The U—O—H…OH2 H-bond is short, 

R(O…H) = 1.648 Å, and more linear than the first, O…H-O = 163.9. Donor H-O bonds are found to 

be longer when H-bonded than in free water: in the U—Oyl…H interaction, R(O-H) = 0.987 Å (cf. 

0.972 in H2O), but in U-O-H…OH2 the O-H distance of 1.015 Å represents a significant increase due 

to H-bonding. The counterpoise corrected binding energy of this complex is -60.10 kJ mol-1, i.e. 

rather more than the sum of individual H-bond strengths found above. This is most likely due to 

geometrical relaxation, especially of O—H bond lengths and U—Oyl…H angle, which was not 

accounted for in rigid PES scans. 

Figure 6: Optimised geometry of [UO2Cl2(H2O)3]…H2O 

 

Harmonic frequency calculation at the optimal geometry confirms this structure as a true 

minimum, and also reveals the effect of H-bonding on O—H and U—Oyl stretching modes that are 

often used as diagnostics of covalent and non-covalent interactions, respectively. Normal modes 

corresponding to O—H stretches in O—H…OU and UO—H…OH2 are predicted to have vibrational 

wavenumbers of 3470 cm-1 and 2948 cm-1, respectively, indicating substantial redshift compared 

to free water (3675 & 3782 cm-1). Both are predicted to be strongly absorbing in infra-red. Two 

further normal modes, for U—Oyl asymmetric and symmetric stretches are predicted to lie at 913 

and 816 cm-1 (compared to 934 and 844 cm-1 in the free complex). The U—Oyl stretch is often used 

as a probe of equatorial covalency:38 our result indicate that shifts of 20 to 30 cm-1 can result from 

hydrogen bonding, which should be taken into account when such stretches are used as a proxy. 

 

NBO analysis of the optimal geometry further highlights the relatively weak nature of H-bonds to 

Oyl: second-order perturbation analysis indicates donation from U—Oyl bond orbital to H-OH * 

corresponding to stabilisation of 23.7 kJ mol-1. By comparison, donation from water O LP to H-OU 
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* contributes 128.5 kJ mol-1 to the stability of the complex. AIM analysis (Table 3) further 

supports this picture: both H-bonds have properties at relevant bond critical points typical of 

hydrogen bonding, but by every measure the latter is markedly stronger than the former. The 

effect of H-bonding on the uranyl bonds is also evident: the U—Oyl that acts as an acceptor is 

notably weaker than the bond not involved in H-bonding, with BCP and bond order reduced by 

around 20%. As with U—Oyl stretch, such data has been used to test for covalency in equatorial 

coordination.39 Our data indicate that the effects of hydrogen bonding, while relatively subtle, are 

of a similar order to those observed due to covalency. AIM data also reflects the stronger redshift 

of O—H stretch where this bond serves as the donor in the stronger hydrogen bond, with most 

measures of bond strength around 10% lower. 

 

Table 3: AIM data for optimal geometry of [UO2Cl2(H2O)3]…H2O 

  2 G V H Bond Order 

UO...H 0.021 +0.124 +0.028 -0.024 +0.004 0.031 

OH...O 0.033 +0.244 +0.059 -0.057 +0.002 0.034 

U—Oyl 1 a 0.292 +0.586 +0.394 -0.641 -0.247 1.782 

U—Oyl 2 b 0.313 +0.612 +0.437 -0.720 -0.283 1.946 

O-H…OU 0.331 -2.374 +0.011 -0.675 -0.664 0.543 

O-H…OH2 0.301 -2.130 +0.035 -0.602 -0.567 0.451 

a H-bond acceptor; b not H-bond acceptor 

 

Figure 7 shows potential energy scans for halogen bonding in [UO2(NCSe)2(H2O)3]…H2O, revealing 

very weak stabilisation of between 1 and 3 kJ mol-1 at minima corresponding to R(Se…O)  3.3 to 

3.5 Å. The weakness of this binding is demonstrated by data in Table 4, where ab initio DLPNO-

CCSD(T) and MP2 values are less than 1 kJ mol-1, and Hartree-Fock is non-binding. This indicates 

that binding is driven by correlation effects such as dispersion, and that in this case at least there is 

little or no electrostatic contribution to this ‘pseudo-halogen bonding’. 
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Figure 7: Potential energy scan of R(Se…O) in [UO2(NCSe)2(H2O)3]…H2O 

 

 

Table 4: Counterpoise corrected binding energy at R(Se…O) = 3.3 Å / kJ mol-1 

CCSD(T) MP2 HF BP86-D3 B3LYP-D3 wB97x-D3 M06-2X B2PLYP 

-0.56 -0.71 +2.23 -3.37 -3.65 -2.36 -2.75 -0.88 

 

Recent work from Cahill’s group suggested the use of halogen bonding as a means to effect 

supramolecular recognition of uranyl ions without the risk of hydrolysis that stems from hydrogen 

bonding.16 We have therefore carried out a preliminary study of a model complex, namely 

[UO2Cl2(H2O)3]…Br—Cl, in which BrCl is a strong halogen bond donor. Figure 8 shows the optimal 

geometry of this complex, in which R(Br…O) = 2.521 Å and U—Oyl…Br = 129.6. The complex also 

forms an O—H…Br contact, with H…Br = 2.400 Å and 149.6.  The counterpoise corrected binding 

energy of this complex is -36.40 kJ mol-1, i.e. a strong interaction albeit rather weaker than the 

analogous complex with H2O. 
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Figure 8: Optimised geometry of [UO2Cl2(H2O)3]…Br—Cl  

 

All calculations reported thus far employed the small-core (60 electron) Stuttgart ECP/basis on U, 

previously shown to be necessary for proper description of the electronic structure of uranyl 

species, with triple- basis on remaining atoms, widely reported as effective for DFT calculations 

on non-covalent interactions. However, this basis would impose significant computational 

overhead for larger systems than the models discussed here. It is therefore of interest to examine 

the performance of smaller basis sets, including larger (78 electron) core on U as well as smaller 

valence basis sets on light atoms. Such combinations are common for DFT calculations on d-block 

chemistry, and if appropriate would allow more rapid calculation of structures and binding 

energies, especially when combined with the computationally efficient RI-BP86-D3 method. Table 

5 indicates that the predicted geometry and O—H stretches vary with choice of basis set and ECP, 

but within a relatively small range. U—Oyl and U—OOH2 bond lengths vary by no more than 0.03 Å, 

as does the length of the stronger UO—H…O H-bond. The weaker U—Oyl…HOH H-bond varies 

more with basis set: all large core ECPs predict a longer contact, highlighting the importance of 

explicitly including formally “core” orbitals on U in the DFT calculation for correct description of 

the electronic structure of uranyl. The combination of Lanl2DZ/6-31G(d,p) is particularly efficient, 

and might prove useful for rapid screening of possible non-covalent interactions in larger systems. 
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Table 5: Selected geometrical and vibrational of [UO2Cl2(H2O)3]…H2O resulting from BP86-D3 

calculations with different combinations of basis set and ECP (Å, cm-1, min) 

U basis O/Cl/H 

basis 

U—Oyla U—OOH2
a UO…H =O…H (OH)w

a (OH)eq
a Time 

Stutt 60e TZVP-f 1.813 2.506 1.648 1.931 3470 2948 187 

Stutt 78e TZVP-f 1.786 2.517 1.674 2.221 3315 3007 182 

Lanl2DZ 78e TZVP-f 1.809 2.548 1.674 2.251 3337 3002 142 

Lanl2DZ 78e 6-31G(d,p) 1.818 2.512 1.618 2.175 3354 2894 58 

Stutt 60e 6-31G(d,p) 1.808 2.484 1.612 2.044 3385 2866 110 

a For bonds directly involved in hydrogen bonding; b Time in minutes required for analytical 

frequency calculation on a single processor. 

 

The above results clearly show the weakness of Oyl as a hydrogen- or halogen-bond acceptor, but 

do not explain the origin of this behaviour. To examine this in more detail, we employed NPA and 

NBO analysis (Table 6). The former indicates much smaller atomic charges than formal U6+ and O2-, 

reflecting the importance of covalent bonding within the uranyl unit and with equatorial ligands. 

Oyl is markedly less negative than OOH2, reflecting the pattern seen in the electrostatic potential. 

Overall, the UO2 unit is slightly (+0.08 e) positive, balanced by larger negative (-0.35 e) and positive 

(+0.21 e) charges on Cl and OH2 units, respectively. The importance of covalency is also seen in 

electron configurations: formally empty valence orbitals on U exhibit significant population, most 

notably in 5f and 6d. Also, the ratio of p to s population in Oyl is smaller (2.72) than in OOH2 (3.04), 

but not to the extent that assignment of the former as sp2 and the latter sp3 seems warranted. 

 
Table 6a: Natural population analysis of [UO2Cl2(H2O)3] 

Atom Charge Config 

U +1.18 7S0.23 5f2.37 6d1.69 7p0.47 

Oyl -0.55 2S1.76 2p4.79  

OOH2 -0.83 2S1.69 2p5.13 

Cl -0.35 3S1.85 3p5.51 

H +0.52 1S0.47 

Table 6b: Natural bond orbital analysis of [UO2Cl2(H2O)3] 

Bond A-B Occ Energy %A %B Assignment 

U=O 1.99 -1.341 10 90 u  

U=O 1.98 -0.473   20 80  
U=O 1.98 -0.481 20 80  
U=O 1.87 -0.557 16 84 g 

U-O 1.98 -0.818 8 92  

U-Cl 1.99 -0.369 5 95  
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u   g 

Figure 9: U-O “bonding” NBOs [UO2Cl5(H2O)3]  
 

NBO data (Table 6b and Figure 9) sheds further light on the electronic structure of [UO2Cl5(H2O)3] 

and its effect on H-bond acceptor ability. As set out in Kaltsoyannis’s review,40 there are 4 

molecular orbitals involved in U=O bonding that transform as g, u, g and u in the Dh point 

group. The lower symmetry and involvement of equatorial ligands in this case prevents such clear 

cut assignments of canonical MOs, but NBOs corresponding to these are found. As shown by 

Fillaux et al,41 equatorial ligands affect the energy ordering compared to that set out for bare 

[UO2]2+. Here, we find that the -bonding NBOs are higher in energy than the -bonding ones, 

which might suggest that their chemistry should be analogous to organic or transition metal 

carbonyls. However, the strong overlap with 5f orbitals in both -bonding NBOs means that these 

are not available as lone pairs as they would be in p- or d-block molecules. Also, the NBO that is 

most ‘lone-pair-like’ is the one denoted u, but this is lowest in energy of the U—O bonding 

orbitals and hence less available for interaction with H-bond donors than might be anticipated 

from the plot alone. 

 

Conclusions 

We have used theoretical methods, supported by crystallographic data, to examine the propensity 

for hydrogen- and halogen-bonding within some model uranyl systems. This clearly shows the 

weakness of U—Oyl as an acceptor for hydrogen bonding: the stabilisation of a complex to water is 

estimated to be around -11 kJ mol-1, compared to -20 kJ mol-1 for the water dimer using the same 

methods. The optimal O…H distance for this interaction is found to be around 2.10 Å, which agrees 

well with the most common value found in a survey of published crystal structures. In contrast, 

equatorially coordinated water acts as a strong H-bond donor with stabilisation in a complex with 

water of around -30 kJ mol-1. U—Oyl is also found to be a viable acceptor for halogen bonding, 
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while equatorial [NCSe]- is a weak pseudo-halogen bond donor. In the model complexes 

considered here, water forms a cyclic hydrogen bonded complex when allowed to relax with no 

geometrical constraint. The dominance of the equatorial water ligand in determining the 

geometry and stabilisation of this complex is shown by NBO and AIM data. The weak acceptor 

ability of Oyl is proposed to stem from the covalent overlap in U—Oyl bonds: NBO analysis finds 4 

bonding MOs corresponding largely to donation from O to U, along with significant population of 

formally empty valence orbitals on U, leading to reduced negative charge on Oyl and low-energy O-

centred molecular orbitals that are relatively unavailable for interaction with hydrogen bond 

donors. 

In the light of recent literature discussions on benchmarking of quantum chemistry,42 this work 

falls more towards internal validation of approximate methodology against more quantitative 

data, rather than comparison against experiment. We take this approach mainly to avoid 

complications in interpretation of data: Figure 4 is a case in point, where a second maximum in 

O…H distance apparently stems from interaction modes other than the one of interest. 

Nevertheless, we report some experimental data here that support our theoretical predictions, 

and intend to further compare DFT predictions to experimental data in future. 
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