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Amidine functionalized phosphines: tuneable ligands for transition 

metals 

Lewis C. Wilkins,a Rebecca L. Melen,a James A. Plattsa and Paul D. Newmanb* 
Attachment of racemic 1,3,5,7-tetramethyl-2,4,6-trioxa-8-phosphatricyclo[3.3.1.13,7]decane (α,β-CgP) to 

(1R,5S)-1,8,8-trimethyl-2,4-diazabicyclo[3.2.1]oct-2-ene gave a diastereomeric mixture of a novel 5 

amidine-phosphine ligand, α,β-CgPAm. The phosphination was completely selective for the 4-position of 

the bicyclic amidine and there was no subsequent 1,2-migration of the α,β-CgP group. Methylation of the 

non-phosphinated nitrogen gave the amidinium salt [α,β-CgPAmMe]BF4 as a diastereomeric mixture. 

The donating ability of α,β-CgPAm and [α,β-CgPAmMe]+ has been assessed through the synthesis and 

characterization of appropriate Rh(I), Au(I) and Pt(II) complexes. As expected α,β-CgPAm is a better net 10 

donor than the cationic derivative as shown by the magnitude of the υCO stretches in the IR spectra of the 

[Rh(L)(CO)(acac)]0/+ complexes and through determination of the relative energies of the HOMO and 

LUMO orbitals for both ligands by DFT. Attempts to resolve [Au(α,β-CgPAmMe)Cl]BF4, [Pt(α,β-

CgPAmMe)Cl3], [Rh(α,β-CgPAmMe)(acac)(CO)]BF4 and [Rh(α,β-CgPAmH)(acac)(CO)]BF4 by 

fractional crystallization were unsuccessful as diastereomeric mixtures were obtained in every case; the 15 

structures of the last three complexes have been determined by single-crystal X-ray techniques and 

compared with related literature complexes. 

Introduction 

Much of the appeal of the highly utilized phosphorus-donating 

ligands derives from the ease with which their stereoelectronic 20 

character can be tuned through appropriate choice of substituent 

and/or supporting molecular framework. In crude terms, the use of 

alkyl groups at the P-donor promotes -donation but compromises 

π-acceptance while substituents containing electronegative atoms 

directly bonded to the phosphorus generate ligands that display the 25 

opposite behavior. This simple delineation dictated much of the 

early application of P-ligands in catalysis with phosphines 

(particularly trialkylphosphines) being employed when net donors 

were desired and phosphites when acceptors were necessary. The 

use of phosphites is often beset with problems of stability,1 30 

especially under forcing or acidic conditions, and hence more 

robust surrogates have been sought. 

One way to generate electron-deficient phosphines and potentially 

circumvent the aforementioned stability issues is to use positively 

charged substituents directly bonded to the P-donor.2 The 35 

positively charged substituents currently employed include 

cyclopropenium,3 pyridinium4 and imidazolinium2,5 groups and 

the resultant phosphines can be mono-,2 di-2b,6 or tri-cationic7 

depending on the number of these substituents bound to the P atom. 

As expected, the inclusion of cationic groups at phosphorus 40 

generates strongly electrophilic ligands that deplete electron 

density at the metal center upon coordination enabling enhanced 

π-activation of electron-rich substrates such as alkynes to enable 

hitherto unknown or difficult reaction chemistry.2-7 Alcarazo and 

coworkers have been at the vanguard of this exciting field and have 45 

been responsible for the development of several frameworks, 

including recent asymmetric examples,8 showing highly 

electrophilic character at phosphorus. The electronic character of 

the ligand need not be pre-set and electron-deficient systems can 

be derived through alkylation, protonation or binding of Lewis 50 

acids to appropriate substituents on the phosphorus atom as 

identified recently by Hofmann.9 The reported bidentate systems 

can be neutral or cationic at the extremes or display additive-

dependent chameleonic behavior upon addition of certain (usually 

Lewis acidic) agents.9 These examples show that, with appropriate 55 

design, an electronically diverse range of ligands can be derived 

from a single framework through judicious choice of receptor 

group and activating agent. 

Our combined interest in cyclic phosphines10 and ring-expanded 

NHC11 ligands prompted us to explore the possibility of using 60 

phosphines with amidine substituents as latent cationic ligands. 

The elegant work of Alcarazo and others2-9 has focused on cationic 

phosphines where the positively charged fragment(s) is usually 

attached via a C–P bond with examples of P-donors containing a 

cationic nitrogen heterocycle attached by an N–P link being rare in 65 

the literature.12 Such compounds do exist but they have been 

primarily used as precursors to P-functionalized NHCs12b-e,13 and 

the coordination chemistry of the cationic phosphines has not been 

explored. Furthermore, we have been unable to find a single 

example of an amidinium substituted phosphine that contains an 70 

asymmetric element(s) and chiral cationic phosphines containing 

an N–P bond are necessarily absent. This is an obvious omission 

in a burgeoning and exciting research field which we are seeking 

to address through the development of selected N-phosphinated 

amidines(iniums) and/or tetrahydrodiazepine(iniums) with 75 

stereogenic centers. The current paper details our initial foray in 

the area through the preparation and characterization of a 

phosphine-amidine hybrid with a polycyclic framework which 

undergoes ready methylation to generate a cationic 

amidiniophosphine. Changes in the electronic character induced 80 

upon methylation have been assessed through the preparation of a 

number of pertinent metal complexes of both the neutral and 



 
cationic phosphines in concert with DFT calculations.  

Results and Discussion 

Ligand synthesis and characterisation 

Although a number of imidazolium-phosphine compounds are 

known, they have usually been employed as precursors to the 5 

corresponding mixed donor NHC ligands.13 The reaction of 

appropriate imidazoles with halophosphines is the usual route to 

N-phosphinated derivatives, however many R2P fragments tend to 

undergo a 1,2-migration during synthesis to give the C–P 

derivative either in the salt or the neutral carbene. This extends to 10 

amidines and, although the C-P forms are interesting systems in 

their own right, we were focused on examining cyclic amidines 

where the phosphorus group could be introduced and retained at 

one of the nitrogen atoms. Previous studies on imidazole and 

tetrahydropyrimid-2-ylidene derivatives showed the P(tBu)2 unit 15 

to be resistant to migration,9,12b-e,14 attributable, in part, to its large 

steric profile; less bulky phosphines do not appear to be as stable 

in the N–P form and are susceptible to N → C migration. This 

information, allied with our longstanding interest in 

phosphacycles, led us to choose a cyclic mimic of P(tBu)2, namely 20 

1,3,5,7-tetramethyl-2,4,6-trioxa-8-

phosphatricyclo[3.3.1.13,7]decane or Cagephos (α,β-CgP), as our 

PR2 moiety. Although substitutionally similar, α,β-CgP is not as 

strongly donating as P(tBu)2 which is also an advantage for 

developing electrophilic phosphines. The α,β- prefix refers to the 25 

two enantiomeric forms of the phosphacycle which, for the 

secondary phosphine CgPH, are separable.15  

There are very few reports of N-functionalization of 6-membered 

amidines/amidiniums with PR2 groups12 and none concerning 7-

membered rings or asymmetric derivatives. Our previous work on 30 

ring-expanded NHCs has concentrated on inherently chiral, fused-

ring systems derived from camphoric acid.11 Thus, we sought to 

combine this framework with the α,β-CgP unit to access hybrid 

ligands of the form highlighted above. The synthetic procedure for 

the preparation of the amidine-Cagephos and amidinium-35 

Cagephos ligands, α,β-CgPAm and [α,β-CgPAmMe]+, is shown in 

Scheme 1. As indicated, the ligands were acquired as 1:1 

diastereomeric mixtures as, although the amidinium salt was a 

single isomer, the CgPBr was racemic. Our intention was to use 

the amidinium framework as primary source of asymmetry and as 40 

a chiral auxiliary to assist in separation of the diastereomers post-

synthesis. The initial phosphination reaction proceeds in high yield 

from the reaction of the cyclic amidinium salt [AmH2]BF4 with 

α,β-CgPBr in the presence of potassium carbonate. The differential 

reactivity of the two distinct nitrogen atoms in the amidine allows 45 

complete control over the regioselectivity so that the addition 

occurs only at the 4-position. The reaction can be followed by 31P 

NMR spectroscopy which, in the early stages, shows the expected 

decrease in the intensity of the peak at δP ~55 ppm (α,β-CgPBr) 

with the contemporaneous appearance of two new peaks at ~42 and 50 

~33 ppm. These peaks represent the two diastereomers of the 

initially formed amidinium phosphine, [α,β-CgPAmH]X. As the 

reaction continues to completion, the intensity of the α,β-CgPBr 

and the amidinium phosphine peaks decrease as the desired 

deprotonated α,β-CgPAm compound is formed; the two 55 

diastereomers being observed at 29.0 and 21.5 ppm in the 31P NMR 

spectrum. As noted there is no diastereoselectivity observed during 

the addition and α,β-CgPAm is obtained as a cream solid which is 

a mixture of the two possible isomers. This leads to quite 

complicated 1H and 13C NMR spectra as every resonance is 60 

duplicated in both spectra (see ESI). The lack of N→C migration 

of the α,β-CgP fragment is confirmed by both the 31P{1H} 

chemical shift (C-bound derivatives are further upfield) and the 

observation of the NCHN hydrogen in the 1H NMR spectrum. 

Isolation of the N-phosphinated compound indicates that α,β-65 

CgPAm does mimic the behavior observed for the di-(tBu)P group 

in related imidazole-phosphines.9,12b-e Efforts to resolve the 

diastereomers by crystallization have so far proved unsuccessful. 

 70 

Scheme 1. Synthesis of α,β-CgPAm and [α,β-CgPAmMe]BF4. 

Selective methylation of the amidine nitrogen atom is achieved by 

the reaction of α,β-CgPAm with trimethyloxonium 

tetrafluoroborate in dichloromethane. The reaction goes to 

completion within one hour at room temperature and is easily 75 

monitored by 31P NMR spectroscopy as the signals for the neutral 

phosphines disappear and those for the amidinium species appear 

at 45.0 and 36.5 ppm respectively. The magnitude of the downfield 

shift is commensurate with the alkylation of the amidine group 

with no evidence of competitive methylation at the phosphorus. 80 

Recrystallization of the salt from THF by slow evaporation under 

air gave colorless crystals suitable for structure determination by 

single-crystal X-ray techniques. The asymmetric unit contains two 

molecules, one of each of the two diastereomers, with one isomer 

being shown in Figure 1. The molecular structure of each is as 85 

expected with almost exactly equivalent metrics between the two 

diastereomers. The P–N bond lengths at 1.760(5) and 1.764(5) Å 

compare with values of 1.796(3), 1.752(4) and 1.766(5) Å quoted 

by Bertrand for his onio- and dionio-substituted phosphanes 

coordinated by DBU and DBN.12a The N–C6 bond lengths are 90 

comparable and lie between the values expected for single and 

double bonds reflecting conjugation across all three atoms and the 

N3–C6–N4 angle is typical of amidinium salts with this bicyclic 

framework.16 The orientation of the phosphorus lone pair is trans 

to the amidinium NCHN hydrogen in both cases and the C–P–C 95 

angle in the phosphacycle is compressed to ~94° with wider N–P–

C angles of around 104° (sum of angles about P ~ 303°) typical for 

this phosphacycle.15   

Interestingly, after isolation the 31P{1H} NMR spectrum of the salt 

showed the expected two major peaks in a 1:1 ratio and two minor 100 

peaks at similar chemical shift to the major peaks. Closer 

inspection of the 31P{1H} spectrum of the original reaction mixture 

also revealed the presence of these minor peaks. One possibility is 

rotameric isomers derived from restricted rotation about the P–N 

bond with the major species being the two diastereomeric forms 105 

present in the solid-state structure and the minor components the 

alternative structures resulting from a 180° rotation about the N–P 

bond. DFT calculations suggest that the geometric isomer with the 

P-lone pair cis to the NCHN hydrogen is 12 KJ mol-1 less stable 

than that observed in the solid-state, with a barrier to 110 



 
interconversion of ca. 40 kJ mol-1 (see ESI). However, there was 

no NMR evidence of interconversion of the forms upon heating to 

80 °C as would be expected for a barrier of this magnitude. 

Whatever the exact nature of these minor species their removal 

prior to the preparation of the coordination compounds was not 5 

necessary. The 1H NMR spectrum of [α,β-CgPAmMe]BF4 shows 

the amidinium hydrogen downfield of its position when compared 

to the spectrum of the precursor α,β-CgPAm, commensurate with 

the introduction of a formal positive charge. The N-methyl 

resonances are seen at 3.27 and 3.25 ppm and all the expected 10 

shifts are evident in the 13C NMR spectrum (see experimental and 

ESI). 

 
Figure1. Ortep view of the molecular structure of one of the two 

diastereomers of [α,β-CgPAmMe]BF4. The second isomer, BF4
- anion and 15 

hydrogen atoms have been omitted for clarity. Ellipsoids drawn at 50% 

probability. Selected bond lengths (Å) and angles (º): P2–N3 1.764(5); 

P2–C25 1.864(6); P2–C28 1.868(7); N3–C6 1.327(8); N4–C6 1.297(8); 

N3–C6-N4 122.9(5); P2–N3-C6 125.4(4); C25–P2–C28 93.6(3); N3–P2–

C25 103.3(3); N3–P2–C28 105.4(3). 20 

DFT calculations on both α,β-CgPAm and [α,β-CgPAmMe]+ 

reveal the expected trends where both the HOMO and LUMO are 

lower in energy in the cationic ligand (Figure 2). In both cases the 

HOMO has a large orbital coefficient on the P atom for the lone 

pair which has substantial p-character that is most pronounced in 25 

the cationic ligand. The relative distribution of the HOMO varies 

between the two ligands with a greater component on the 

phosphacycle unit in [α,β-CgPAmMe]+ as opposed to the amidine 

moiety in the neutral ligand. The LUMOs of both ligands are more 

closely similar with substantial p-character at P shared across the 30 

N-P bond (bonding π-orbital) as well as some delocalization over 

the Am fragment. The existence of a bonding N-P component in 

the LUMO suggests that the strength of this link would not be 

compromised upon occupancy of this orbital. NBO analysis shows 

that methylation affects hybridisation at P: in CgPAm the orbital 35 

make up is 3s1.45 3p2.49, and [CgPAmMe]+ the equivalent values 

are 3s1.51 3p2.44. Moreover, NBO also indicates that in CgPAm the 

lone pair on P has 55% s-character, and 45% p, while in 

[CgPAmMe]+ these values are 60/40%, such that the lone pair in 

the latter is expected to have slightly more s-character. 40 

 

 
Figure 2. Frontier orbitals with energies in eV for the LUMO (top) and 

HOMO (bottom) of α,β-CgPAm (left) and [α,β-CgPAmMe]+ (right). 

Although stable in air, in the solid-state and in solution at RT, 45 

heating solutions of the salt in THF or MeCN under air does lead 

to P-oxidation. When a solution of [α,β-CgPAmMe]BF4 in MeCN 

was heated near boiling for five minutes and then left to stand at 

RT, crystals were observed to form which proved to be the 

phosphine oxide derivative [α,β-CgP(O)AmMe]BF4 (Figure 3). As 50 

expected, the P–N bond in the oxide is appreciably shorter at 

1.712(4) Å than the value of 1.764(5) Å observed in [α,β-

CgPAmMe]BF4.17 The P–C bonds are also shorter in the oxide but 

the C–P–C angle in the phosphacycle is expanded compared to that 

in the unoxidized form. The P=O bond length is typical and 55 

averages 1.475(4) Å. The metrics are closely similar to the 

imidazolium-P(O)tBu2 salt of Ogoshi et al18 with the exception of 

the N-P bond which is appreciably shorter here at 1.712(4) Å 

compared to 1.768(5) Å in the reported complex. The strong 

intramolecular hydrogen-bonding between the phosphoryl oxygen 60 

and the NCHN hydrogen observed in Ogoshi’s compound is not 

evident in [α,β-CgP(O)AmMe]BF4 as the hydrogen is directed 

away from the oxygen atom (Figure 3). Aside from the mild 

susceptibility to oxidation upon heating in solution, the ligand is 

robust and does not show any degradation from N-P cleavage upon 65 

heating in wet THF, MeCN or MeOH. 

 
Figure 3. Ortep view of the molecular structure of one of the two 

diastereomers of [α,β-CgP(O)AmMe]BF4. The second isomer and the 



 
BF4

- anions have been omitted for clarity. Ellipsoids drawn at 50% 

probability. Selected bond lengths (Å) and angles (º): P2–O15 1.479(4); 

P2–N3 1.712(4); P2–C70 1.837(5); P2–C77 1.839(5); N3–C60 1.349(7); 

N4–C60 1.306(7); C70–P2–C77 97.8(2); N3–P2–C70 110.1(3); N3–P2–

C77 106.5(2). 5 

Metal complexes of α,β-CgPAm and [α,β-CgPAmMe]+ 

In order to assess bonding differences between coordinated α,β-

CgPAm and [α,β-CgPAmMe]+, we required appropriate reference 

compounds with one or more spectroscopic handles. Tolman 

examined the variation in CO stretching frequencies in a series of 10 

Ni(CO)3(PR3) complexes (derived from highly toxic Ni(CO)4) in 

his seminal study.19 More recently, trans-[M(PR3)2(CO)Cl] 

complexes have been established as user-friendly alternatives for 

the assessment of the electronic character of P-donors.20 However, 

these latter complexes contain two bound phosphines and are not 15 

ideal for our systems as the diastereomeric nature of the ligands 

will lead to undesirable isomeric complications. To circumvent the 

formation of overly complex isomeric mixtures but allow useful 

electronic benchmarking, [Rh(acac)(L)(CO)]0/+ complexes were 

chosen as spectroscopic markers. The 1:1 reaction of α,β-CgPAm 20 

with [Rh(acac)(CO)2] led to the release of CO gas and the 

formation of a bright yellow solution from which yellow [Rh(α,β-

CgPAm)(acac)(CO)] was isolated. The 31P{1H} spectrum of the 

complex consisted of two doublets for the two diastereomers at 

85.9 and 84.7 ppm with 1JP-Rh coupling constants of 199.7 and 25 

202.1 Hz respectively. These values compare with related 

complexes containing P-donors with two carbon atoms and one 

nitrogen bound to the phosphorus such as P(NC4H4)Ph2 (1JP-Rh = 

194 Hz).21 Characteristic features in the 1H NMR spectrum include 

the two peaks for the amidine hydrogens around 7.90 ppm, two 30 

acac CH resonances at ~5.44 ppm and the hydrogens from the 

amidine methine groups close to 4 ppm. The CO stretch is 

observed at 1988 cm-1 in the IR spectrum which compares to values 

of 1978 cm-1 for [Rh(acac)(PPh3)(CO)] and 2006 cm-1 for 

[Rh(acac){P(OPh)3}(CO)].21,22 35 

Substituting α,β-CgPAm for [α,β-CgPAmMe]BF4 gave [Rh(α,β-

CgPAmMe)(acac)(CO)]BF4 in similar fashion. The 31P{1H} NMR 

spectrum had the two doublets for each diastereomer at 111.9 and 

107.3 ppm with 1JP-Rh values of 206.6 and 208.8 Hz respectively. 

The increased values of the coupling constants are commensurate 40 

with the greater electron-withdrawing ability of [α,β-CgPAmMe]+ 

compared to α,β-CgPAm. This is further exemplified in the IR 

spectrum of [Rh(α,β-CgPAmMe)(acac)(CO)]BF4 where the CO 

stretch is observed at 2005 cm-1. The solid-state structure of the 

complex was determined from crystals grown by vapor diffusion 45 

of Et2O into a solution of the complex in CH2Cl2 and the molecular 

structure of one of the two diastereomers present in the unit cell is 

shown in Figure 4. The metrics accord with those expected when 

compared with electron-donating phosphines or electron-

withdrawing phosphites with a Rh–P bond length of 2.2174(13) Å 50 

and a slightly elongated Rh-Oacac bond trans to the phosphine.21 

The bond angles about the metal are, allowing for constrictions 

imposed by the chelating acac-, close to the expected 90º. 

Additionally, there is a slight distortion from linearity (6.3(6)–

7.8(6)°) evident in the Rh1–C32–O1 link away from the impacting 55 

phosphacycle. The N3–C51–N4 angle of 124.7(5)º is towards the 

high end for this amidinium scaffold and, unlike in the 

uncoordinated ligand, the amidinium hydrogen and the P-lone pair 

(albeit bonded to the Rh) are mutually cis. 
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Figure 4. Ortep view of the molecular structure of one of the two 

diastereomers of [Rh(α,β-CgPAmMe)(acac)(CO)]BF4. The second 

isomer, BF4
- anion, CH2Cl2 solvent molecule and hydrogen atoms have 

been omitted for clarity. Ellipsoids drawn at 50% probability. Selected 

bond lengths (Å) and angles (º): Rh1–P2 2.2174(13); Rh1–C32 1.833(6); 65 

Rh1–O2 2.053(4); Rh1–O3 2.033(3); P2–N3 1.739(4); P2–C34 1.873(5), 

P2–C41 1.869(5); N3–C51 1.337(6); N4–C51 1.299(6); C(32)-O(1) 

1.134(7); N3–C51–N4 124.7(5); C34–P2–C41 94.4(2); Rh1–P2–N3 

113.73(15); P2–Rh1–C32 92.22(17); P2–Rh1–O3 91.37(10); P2–Rh1–O2 

174.17(11); Rh1–C32–O1 172.2(5). 70 

Methylation of the amidine nitrogen clearly leads to enhanced 

electron-withdrawing capability in [α,β-CgPAmMe]+ compared to 

α,β-CgPAm. However, it remained to be seen what effect, if any, 

the addition of Lewis acids had on the electronic nature of α,β-

CgPAm in [Rh(α,β-CgPAm)(acac)(CO)]. In order to explore how 75 

the electronic properties of α,β-CgPAm could be altered without 

having to formally alkylate to the amidinium species, we examined 

the solution properties of [Rh(α,β-CgPAm)(acac)(CO)] in the 

presence of selected Lewis acids. When one equivalent of BCl3 or 

AlCl3 were added to [Rh(α,β-CgPAm)(acac)(CO)] a downfield 80 

shift was observed in the 31P NMR spectra with two new doublets 

being observed at 109.0 and 105.1 ppm. Somewhat unexpectedly, 

the magnitude of the shift and indeed the 1JP-Rh coupling was 

equivalent in each case. Removal of the volatiles gave light tan 

(BCl3) and yellow (AlCl3) solids respectively with the 1H NMR 85 

spectra of both crude samples being very similar, presenting two 

broad peaks and two triplets in the aromatic region; inexplicably 

there were no resonances assignable to the coordinated acac-. 

Crystallization of the product from the reaction with BCl3 enabled 

an understanding of this behavior as shown from the molecular 90 

structure in Figure 5. 

It is immediately obvious from Figure 5 that the acac- ligand has 

been lost and replaced by two chlorides to give an overall 

zwitterionic structure; the absence of a counterion reflects 

protonation of the N4 atom to generate the zwitterion. The peaks 95 

in the aromatic region of the 1H NMR spectrum alluded to above 

can now be assigned as the NH (broad peaks) and NCHN (triplets) 

hydrogens of the two diastereomers of [Rh(α,β-CgPAmH)(Cl)2]. 

Clearly the influence of the Lewis acid extends beyond simple 

association to the amidine nitrogen and leads to removal of the 100 

acac- and the introduction of a second chloride ligand. The 

provenance of the H+ can only be speculated upon at this stage but 

the only likely source is the solvent (CH2Cl2). This reactivity 



 
remains of interest but is beyond the remit of the current paper and 

will be addressed in detail in a subsequent publication. 

 
Figure 5. Ortep view of the molecular structure of one of the two 

diastereomers of [Rh(α,β-CgPAmH)(Cl)2]. The second isomer, residual 5 

solvent and hydrogen atoms have been omitted for clarity. Ellipsoids 

drawn at 50% probability. Selected bond lengths (Å) and angles (º): Rh1–

P2 2.2176(7); Rh1–C20 1.795(5); Rh1–Cl4 2.3839(11); Rh1–Cl7 

2.3904(8); P2–N3 1.749(3); P2–C12 1.871(3), P2–C21 1.868(3); N3–C40 

1.345(4); N4–C40 1.275(4); N3–C40–N4 122.8(3); C12–P2–C21 10 

93.93(15); Rh1–P2–N3 113.99(9); P2–Rh1–C20 94.12(12); P2–Rh1–Cl4 

90.59(3); P2–Rh1–Cl7 174.78(3); Rh1–C20–O2 175.0(3). 

The Rh(I) complexes were prepared to allow an initial assessment 

of the influence of the amidine/amidinium unit on the donating 

properties of the phosphine. The inability to resolve the 15 

diastereomeric mixtures led us to prepare other coordination 

compounds that might enable this separation. For relevant 

comparison with reported systems, we sought to prepare Au(I) and 

Pt(II) complexes of both α,β-CgAmP and [α,β-CgPAmMe]+. 

[Au(α,β-CgPAm)Cl] was isolated in good yield as a cream solid 20 

from the reaction of the ligand with Au(THT)Cl in THF. The 
31P{1H} NMR confirmed complexation with coordination shifts 

(Δδ) of 35.8 and 37.6 ppm for the two diastereomers. The identity 

of the complex was fully confirmed by 1H, 13C and HRMS as 

detailed in the ESI. [Au(α,β-CgPAmMe)Cl]BF4 was isolated as a 25 

white solid in a similar manner and gave two broad resonances in 

the 31P{1H} spectrum with coordination shifts of 31.9 and 33.5 

ppm and peak half-height widths of 237 and 324 Hz respectively. 

The origin of the broadening is speculative but is likely a 

consequence of restricted rotation about the N–P bond. The 30 

broadening does not extend to the 1H NMR spectrum where the 

peaks are largely resolved (see ESI). Attempts to separate the two 

isomers of either [Au(α,β-CgPAm)Cl] or [Au(α,β-

CgPAmMe)Cl]BF4 by crystallization from common organic 

solvents and solvent mixtures were unsuccessful with only the 35 

diastereomeric mixture being acquired on every occasion. 

Structural analysis for either complex was not possible as the 

crystals obtained were not of sufficient quality for single-crystal 

X-ray diffraction.  

The reaction of α,β-CgPAm with K2[PtCl4] gave a yellow solid 40 

which proved to be largely insoluble in all common solvents 

precluding full characterization. Fortunately, the similarly 

prepared [Pt(α,β-CgPAmMe)(Cl)3] complex was more amenable 

to analysis. Although not freely soluble in most solvents, it was 

sufficiently soluble in acetone to allow the isolation of yellow 45 

crystals suitable for structural determination to enable structural 

comparison with the limited number of crystallographically 

characterized complexes bearing cationic phosphines.2c,4,5 The 

molecular structure of one of the two diastereomers is shown in 

Figure 6. The zwitterionic complex has the expected square planar 50 

geometry about the Pt center with 90 ± 5° angles (sum of angles 

about Pt = 359.96°). The Pt–P bond length is typical and compares 

with those of 2.2122(13) and 2.224(4) Å reported by Alcarazo for 

related [Pt(PR3)Cl3] complexes containing cationic phosphines.5 

The Pt–Cl bond trans to the P-donor is marginally longer than the 55 

other two as expected from the greater trans directing effect of the 

cationic donor again in accordance with the observations of 

Alcarazo.4,5 As for the other complexes reported here, the 

orientation of the amidinium group with respect to the P–M bond 

is cis and there is complementarity between the metrics reported 60 

for this complex and the others above. This projection of the 

NCHN unit towards the other ligands in each of the complexes may 

reflect a small degree of H-bonding between the NCHN hydrogen 

and one or more of the other ligands bound to the metals but is 

most likely the least sterically encumbered orientation for the 65 

amidinium group. Analysis of the sterics (excluding hydrogens) 

presented by the [α,β-CgPAmMe]+ ligand using the SambVca 2.0 

program23 gave %Vbur values of 33.2, 32.9 and 32.5% for the 

[Rh(α,β-CgPAmMe)(acac)(CO)]BF4, [Rh(α,β-CgPAmH)(Cl)2] 

and [Pt(α,β-CgPAmMe)(Cl)3] complexes, respectively. These 70 

values are not dissimilar to those for PPh3.21 

 

 
Figure 6. Ortep view of the molecular structure of one of the two 

diastereomers of [Pt(α,β-CgPAmMe)(Cl)3]. The second isomer, residual 75 

solvent and hydrogen atoms have been omitted for clarity. Ellipsoids 

drawn at 50% probability. Selected bond lengths (Å) and angles (º): Pt2–

P5 2.219(3); Pt2–Cl3 2.309(3); Pt2–Cl4 2.351(3); Pt2–Cl7 2.297(3); P5–

N1 1.768(8); P5–C1 1.879(11), P5–C15 1.885(11); N1–C16 1.320(17); 

N2–C16 1.334(14); N1–C16–N2 124.3(12); C1–P5–C15 95.6(5); Pt2–80 

P5–N1 111.7(3); P5–Pt2–Cl3 91.12(11); P5–Pt2–Cl7 94.40(10); P5–Pt2–

Cl4 178.24(11). 

The 31P{1H} NMR spectrum of [Pt(α,β-CgPAmMe)(Cl)3] contains 

two major peaks for each of the two diastereomers with 195Pt (1JP-

Pt = 4284 and 4334 Hz). These values are appreciably larger than 85 

those quoted for related imidazolium-2-phosphine and 

pyridiniumphosphine complexes of the type [(PRPh2)PtCl3] where 

values of 3420 and 1953 Hz were reported4,24 but close to those 

(3942 Hz) seen with another imidazolium-2-phosphine complex5 

and related complexes of Cagephos derivatives where the 90 

phosphine is trans to chloride (4101 and 4198 Hz).25 Aside from 

the major species in solution, the 31P{1H} spectrum reveals the 



 
presence of two minor species which are believed to be rotameric 

isomers resulting from restricted rotation about the P–N bond. The 
1H NMR spectrum also shows the presence of these minor species. 

Unfortunately the poor solubility of the complex prevented 

acquisition of an acceptable 13C NMR spectrum. 5 

DFT calculations on [Pt(α,β-CgPAmMe)(Cl)3] were performed to 

further explore the behavior of the cationic ligand. Geometry 

optimization yielded a Pt—P distance of 2.276 Å, in reasonable 

agreement with experimental data and almost identical to that in 

[Pt(PPh3)(Cl)3] at the same level of calculation. Natural bond 10 

orbital (NBO) analysis indicates a strong Pt—P bond made up of 

donation of the P lone pair into a hybrid of Pt s, p and d-orbital and 

back-donation from a filled d-orbital on Pt to empty 

(predominantly d type) orbitals on P. The latter contribution 

equates to 35 kcal mol-1 which is substantially greater than that of 15 

24 kcal mol-1 calculated for [Pt(PPh3)(Cl)3] (see ESI for full 

details). This data therefore suggests that [α,β-CgPAmMe]+ has 

similar -donation to, but is a rather better -acceptor ligand than, 

PPh3. 

Conclusions 20 

A novel cationic phosphine ligand [α,β-CgPAmMe]+ composed of 

a chiral amidinium substituent and a racemic phosphacycle has 

been prepared and aspects of its coordination chemistry explored 

relative to the neutral parent phosphine α,β-CgPAm. IR analysis of 

the [Rh(L)(acac)(CO)Cl]0,1+ complexes together with DFT 25 

analysis of the free ligands reveal the cationic ligand to be a poorer 

donor but better acceptor than the neutral form. Attempts to form 

simple Lewis acid/base pairs between [Rh(α,β-

CgPAm)(acac)(CO)] and BCl3 or AlCl3 were unsuccessful due to 

facile acac- abstraction by the Lewis acids. The validity of the 30 

phosphines as ligands was further confirmed through coordination 

to Au(I) and Pt(II) and analysis of the resultant complexes. The 

acquisition of single diastereomers of either of the ligands or the 

reported complexes have proved unsuccessful but efforts towards 

accessing useable quantities of both diastereomers either through 35 

improved separation techniques or via synthetic protocols using 

pre-resolved α- and/or β-CgPBr are in progress. Once realized, the 

single diastereomers will be examined as ligands for various 

catalytic asymmetric transformations which will be reported in due 

course. 40 

Experimental 

General information: Unless stated otherwise, all reactions were 

performed under a nitrogen atmosphere using standard Schlenk 

techniques and, where appropriate, an inert atmosphere glovebox. 

Solvents were dried and degassed by refluxing over standard 45 

drying agents under dinitrogen and distilled immediately prior to 

use or obtained from an MBraun SPS system. Infrared spectra were 

recorded as solid samples on a Shimadzu ATR spectrophotometer. 

Mass spectra were carried out on a VG Platform II Fisons mass 

spectrometer. The NMR spectra were recorded on Bruker Avance 50 

400, 500 or 600 MHz instruments at the frequencies indicated. α,β-

CgPBr was prepared as detailed in the literature.26   

Crystallography 

Single-crystal XRD data were collected on single crystals mounted 

in paratone on an Agilent SuperNova Dual Atlas three-circle 55 

diffractometer with a mirror monochromator [using either Cu (λ = 

1.5418 Å) or Mo (λ = 0.7107 Å) radiation], equipped with an 

Oxford Cryosystems cooling apparatus. Data were collected and 

integrated and data corrected for absorption using a numerical 

absorption correction based on gaussian integration over a 60 

multifaceted crystal model within CrysAlisPro.27 The structures 

were solved by direct methods and refined against F2 within 

SHELXL-2013.28 A summary of crystallographic data are 

available as ESI and the structures deposited with the Cambridge 

Structural Database (CCDC deposition numbers 1550609–65 

1550613). These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.  

Syntheses 

α,β-CgPAm. 70 

A mixture of 1,8,8-trimethyl-4-aza-2-azoniabicyclo[3.2.1]oct-2-

ene tetrafluoroborate (0.5 g, 2.1 mmol), α,β-CgPBr (0.62 g, 2.1 

mmol) and K2CO3 (0.87 g, 6.3 mmol) were stirred in MeCN (10 

ml) for 24 hrs. The mixture was subsequently filtered and the 

filtrate concentrated to small volume whereupon a cream solid 75 

precipitated. The solid was isolated by filtration and dried in vacuo. 

Yield = 0.44 g (57%). A second crop (20%) was isolated after 

cooling the mother liquor to -20 °C overnight. 31P{1H} (CDCl3, 

145 MHz): 28.8, 21.3 ppm. 1H (CDCl3, 400 MHz): 7.51 (s, 0.5H), 

7.47 (s, 0.5H), 3.11 (dd, 9.6, 5.2 Hz, 0.5H), 2.97 (dd, 9.8, 4.6 Hz, 80 

0.5H), 1.97 (m, 3H), 1.77 (m, 4H), 1.63 (m, 1H), 1.38 (d, 2.8 Hz, 

1.5H), 1.36 (d, 3.5 Hz, 1.5H), 1.27 (obs, 9H), 1.05 (d, 3.2 Hz, 3H), 

0.95 (s, 1.5H), 0.93 (s, 3H), 0.91 (s, 1.5H) ppm. 13C{1H} (CDCl3, 

100 MHz): 146.4 (CH, d, 4.7 Hz), 146.1 (CH, d, 4.3 Hz), 94.4 (C), 

96.2 (C), 95.8 (C), 95.7 (C), 75.5 (C, d, 25.8 Hz), 74.8 (C, d, 25.1 85 

Hz), 73.7 (C, d, 15.2 Hz), 73.5 (C, d, 17.5 Hz), 70.9 (CH, d, 27.0 

Hz), 70.1 (CH, d, 27.8 Hz), 63.4 (C), 63.2 (C), 46.1 (CH2, d, 12.4 

Hz), 45.9 (CH2, d, 12.3 Hz), 41.7 (CH2), 41.0 (CH2), 40.6 (C, d, 

5.7 Hz), 40.0 (C, d, 3.7 Hz), 36.1 (CH2), 35.9 (CH2), 34.0 (CH2), 

33.9 (CH2), 27.8 (CH3, d, 1.8 Hz), 27.7 (CH3, d, 23.0 Hz), 27.3 90 

(CH3, d, 5.0 Hz), 27.0 (CH3, d, 22.4 Hz), 26.4 (CH3, d, 10.5 Hz), 

25.5 (CH3, d, 10.5 Hz), 22.7 (2 x CH3), 19.9 (CH3), 19.5 (CH3), 

18.4 (CH3), 17.8 (CH3) ppm. HRMS (ES): m/z 367.2158 (calc. 

367.2151) [L + H]+, 100%. 

[α,β-CgPAmMe]BF4 95 

A mixture of α,β-CgPAm (0.5 g, 1.37 mmol) and [Me3O]BF4 (0.21 

g, 1.40 mmol) were stirred in CH2Cl2 (25 ml) for 2 hrs. The solvent 

was removed in vacuo and the solid residue dissolved in the 

minimum amount of THF (~5 ml) in air. Upon leaving overnight 

fine crystals of [α,β-CgPAmMe]BF4 precipitated which were 100 

isolated and air-dried. Yield = 0.34 g (53%). A second crop (18%) 

was isolated after leaving the mother liquor to stand. 31P{1H} 

(CDCl3, 145 MHz): 44.0, 35.4 ppm. 1H (CDCl3, 400 MHz): 8.17 

(s, 0.5H), 8.13 (s, 0.5H), 3.43 (t, 6.7 Hz, 0.5H), 3.37 (t, 5.8 Hz, 

0.5H), 3.27 (s, 1.5H), 3.25 (s, 1.5H), 2.90 (m, 0.5H), 2.61 (m, 105 

0.5H), 2.25-1.65 (m, 7H), 1.42 (obs, 6H), 1.39 (br, 1.5H), 1.37 (s, 

1.5H), 1.33 (s, 1.5H), 1.31 (s, 3H), 1.28 (s, 1.5H), 1.11 (obs, 6H), 

1.05 (s, 3H) ppm. 13C{1H} (CD3CN, 100 MHz): 156.8 (CH), 156.3 

(CH), 97.1 (C, d, 1.1 Hz), 96.9 (C), 96.7 (2 x C), 75.7 (C, d, 30.2 

Hz), 75.4 (C, d, 28.8 Hz), 73.9 (C, d, 17.5 Hz), 73.8 (C, d, 16.5 110 

Hz), 73.3 (C), 72.5 (C), 71.3 (CH, d, 20.7 Hz), 70.3 (CH, d, 21.8 

Hz), 45.4 (CH2, d, 19.8 Hz), 45.3 (CH2, d, 19.8 Hz), 42.2 (C, d, 4.6 

http://www.ccdc.cam.ac.uk/data_request/cif


 
Hz), 41.6 (C, d, 2.4 Hz), 40.2 (CH2), 39.8 (CH2), 39.6 (CH3), 39.0 

(CH3), 35.3 (CH2), 35.0 (CH2), 33.0 (CH2), 32.2 (CH2), 27.6 (CH3, 

d, 28.3 Hz), 27.4 (CH3, d, 22.0 Hz), 26.9 (2 x CH3), 26.2 (CH3, d, 

1.2 Hz), 26.1 (CH3, d, 1.2 Hz), 25.3 (CH3, d, 10.3 Hz), 25.2 (CH3, 

d, 10.3 Hz), 21.3 (2 x CH3), 17.3 (CH3), 17.0 (CH3), 13.7 (CH3), 5 

13.2 (CH3) ppm. HRMS (ES): m/z 381.2316 (calc. 381.2307) [L]+, 

100%. 

[α,β-CgP(O)AmMe]BF4 

A solution of [α,β-CgPAmMe]BF4 (30 mg) in MeCN (2 ml) was 

heated near boiling for 2 mins and left to stand at RT whereupon 10 

the compound crystallized. The crystals were isolated by filtration 

and air-dried. Yield = 12 mg (39%). 31P{1H} (CD3CN, 145 MHz): 

27.2, 26.4 ppm. 1H (CD3CN, 400 MHz): 8.28 (s, 1H), 4.21 (t, 5.6 

Hz, 0.5H), 4.11 (t, 4.6 Hz, 0.5H), 3.33 (s, 1.5H), 3.32 (s, 1.5H), 

2.70 – 1.94 (m, 9H), 1.47 (s, 3H), 1.43 (s br, 6H), 1.40 (s, 1.5H), 15 

1.34 (s, 1.5H), 1.22 (s, 1.5H), 1.21 (s, 1.5H), 1.15 (s, 1.5H), 1.10 

(s, 1.5H) ppm. 13C{1H} (CD3CN, 100 MHz): 155.1 (CH, d, 5.6 

Hz), 154.8 (CH, d, 5.4 Hz), 97.6 (C, d, 2.5 Hz), 97.4 (C, d, 2.7 Hz), 

97.3 (C, d, 2.8 Hz), 97.2 (C, d, 2.6 Hz), 75.2 (C, d, 27.8 Hz), 75.2 

(C, d, 18.8 Hz), 75.1 (C), 74.8 (CH, d, 18.7 Hz), 74.6 (CH, d, 23.5 20 

Hz), 74.3 (C, d, 8.3 Hz), 74.2 (C), 66.0 (C), 63.6 (C), 43.4 (C, d, 

6.6 Hz), 43.3 (C, d, 5.4 Hz), 43.0 (CH2, d, 11.8 Hz), 43.0 (CH2, d, 

11.8 Hz), 40.8 (CH2), 40.5 (CH2), 39.7 (CH2), 38.8 (CH2), 33.7 

(CH2), 31.9 (CH2), 26.7 (CH3, d, 14.6 Hz), 21.5 (CH3), 21.4 (CH3), 

20.3 (CH3, d, 1.3 Hz), 20.0 (2 x CH3), 19.9 (CH3, d, 1.3 Hz), 17.4 25 

(CH3), 17.1 (CH3), 13.7 (CH3), 13.3 (CH3) ppm. 

[Rh(α,β-CgPAm)(acac)(CO)] 

To a stirred solution of [Rh(acac)(CO)2] (70 mg, 2.73 x 10-4 mol) 

in CH2Cl2 was added α,β-CgPAm (100 mg, 2.73 x 10-4 mol) as a 

solid. After an initial effervescence and color change to a light 30 

yellow, the solution was left to stir for 1 hr. The solvent was 

subsequently removed in vacuo and the solid residue dissolved in 

a small amount of Et2O. After filtering, all volatiles were removed 

to give a bright yellow solid. Yield = 140 mg (86%). 31P{1H} 

(CDCl3, 145 MHz): 88.8 (d, 1JP-Rh 198.6 Hz), 81.8 (d, 1JP-Rh 201.8 35 

Hz) ppm. 1H (CDCl3, 400 MHz): 7.90 (s, 0.5H), 7.86 (d, 3.8 Hz, 

0.5H), 5.44 (s, 0.5H), 5.43 (s, 0.5H), 4.10 (t, 4.1 Hz, 0.5H), 4.05 (t, 

6.6 Hz, 0.5H), 3.44 (dd, 13.4, 5.7 Hz, 0.5H), 3.22 (dd, 13.8, 5.9 Hz, 

0.5H), 2.38-1.64 (m, 7H), 2.02 (s, 3H), 1.88 (s, 1.5H), 1.82 (s, 

1.5H), 1.59 (d, 12.5 Hz, 1.5H), 1.55 (d, 12.8 Hz, 1.5H), 1.40 (s, 40 

1.5H), 1.36 (s, 1.5H), 1.33 (s, 1.5H), 1.32 (s, 1.5H), 1.30 (s, 3H), 

1.07 (d, 5.8 Hz, 3H), 1.01 (s, 1.5H), 0.98 (s, 1.5H), 0.97 (s, 3H) 

ppm. 13C{1H} (CDCl3, 100 MHz): 188.6 (C, dd, 74.6, 24.2 Hz), 

187.8 (C, dd, 75.3, 24.3 Hz), 186.8 (C), 186.6 (C), 184.5 (C), 183.9 

(C), 146.9 (CH, d, 14.9 Hz), 144.6 (CH), 100.1 (CH, d, 2.3 Hz), 45 

100.1 (CH, d, 2.4 Hz), 95.7 (C), 95.3 (C), 94.9 (C, d, 1.2 Hz), 94.8 

(C, d, 1.1 Hz), 75.4 (C, d, 20.6 Hz), 72.5 (C, dd, 17.3, 3.0 Hz), 72.2 

(C, dd, 17.5, 3.1 Hz), 67.1 (CH, d, 3.1 Hz), 63.2 (C), 63.1 (C), 45.8 

(CH2, d, 12.7 Hz), 45.4 (CH2, d, 13.4 Hz), 40.0 (C, d, 2.5 Hz), 39.8 

(CH2), 39.7 (CH2), 39.6 (C), 37.3 (CH2), 36.6 (CH2), 33.0 (CH2), 50 

32.9 (CH2), 26.7 (CH3), 26.6 (CH3), 26.5 (CH3, d, 0.9 Hz), 26.5 

(CH3), 26.4 (CH3, d, 0.9 Hz), 26.1 (CH3), 26.0 (CH3), 25.9 (CH3), 

24.8 (CH3, d, 3.9 Hz), 24.7 (CH3, d, 7.4 Hz), 24.2 (CH3, d, 7.9 Hz), 

23.1 (CH3, d, 3.4 Hz), 22.1 (CH3), 21.9 (CH3), 18.5 (CH3), 18.4 

(CH3), 18.2 (CH3), 18.0 (CH3), ppm. IR (solid): 1988 cm-1 (C≡O). 55 

HRMS (ES): m/z 597.1619 (calc. 597.1601) [M + H]+, 100%. 

[Au(α,β-CgPAm)Cl] 

To a stirred solution of [Au(THT)Cl] (32 mg, 1.03 x 10-4 mol) in 

THF (5 ml) was added α,β-CgPAm (38 mg, 1.03 x 10-4 mol) as a 

solid. The solution was left to stir for 1 hr and the solvent removed 60 

in vacuo to yield a cream solid. Yield = 55 mg (90%). 31P{1H} 

(C6D6, 145 MHz): 64.6, 58.9 ppm. 1H (C6D6, 400 MHz): 7.72 (s, 

0.5H), 7.68 (s, 0.5H), 3.80 (dd, 12.2, 2.4 Hz, 0.5H), 3.67 (s br, 1H), 

3.48 (d, 10.2 Hz, 0.5H), 2.62 (br, 1H), 2.14 (m br, 2H), 1.66-1.06 

(m br, 4H), 1.26 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H), 1.12 (s, 3H), 65 

0.85 (s, 1.5H), 0.75 (s, 1.5H), 0.72 (d, 20.0 Hz, 1.5H), 0.40 (s, 

1.5H) ppm. 13C{1H} (C6D6, 100 MHz): 139.8 (CH), 139.6 (CH), 

95.6 (C), 95.4 (C), 95.2 (2 x C), 75.0 (C, d, 28.7 Hz), 74.5 (C, d, 

29.2 Hz), 73.4 (C, d, 37.7 Hz), 73.2 (C, d, 35.6 Hz), 71.4 (CH, d, 

8.2 Hz), 70.2 (CH, d, 8.3 Hz), 64.0 (C), 63.4 (C), 44.6 (CH2, d, 70 

12.0 Hz), 44.3 (CH2, d, 12.1 Hz), 40.1 (CH2), 39.9 (CH2), 39.7 (C), 

39.3 (C), 35.4 (CH2), 35.1 (CH2), 32.9 (CH2), 32.0 (CH2), 29.9 

(CH3), 26.2 (CH3), 26.1 (CH3), 25.7 (CH3), 25.1 (CH3, d, 8.3 Hz), 

24.7 (CH3), 23.6 (CH3, d, 3.5 Hz), 22.6 (CH3, d, 3.4 Hz), 21.3 

(CH3), 21.2 (CH3), 18.7 (CH3), 18.0 (CH3), 17.1 (CH3), 16.9 (CH3) 75 

ppm. HRMS (ES): m/z 599.1509 (calc. 599.1505) [M + H]+, 100%. 

[Au(α,β-CgPAmMe)Cl]BF4 

To a stirred solution of [Au(THT)Cl] (66 mg, 2.14 x 10-4 mol) in 

CH2Cl2 (10 ml) was added [α,β-CgPAmMe]BF4 (100 mg, 2.14 x 

10-4 mol) as a solid and the resultant solution left to stir for 2 hrs. 80 

The solvent was removed in vacuo and the cream solid crystallized 

from CHCl3/Et2O by vapor diffusion. Yield = 102 mg (68%). 
31P{1H} (CDCl3, 145 MHz): 75.9 (br), 68.9 (br) ppm. 1H (CDCl3, 

400 MHz): 8.34 (s, 0.5H), 8.31 (s, 0.5H), 4.18 (dd, 10.4, 4.3 Hz, 

0.5H), 3.86 (br, 0.5H), 3.37 (s, 3H), 2.94 (m, 0.5H), 2.59 (d, 15.4 85 

Hz, 0.5H), 2.50 (dd, 16.1, 6.5 Hz, 1H), 2.25 (m, 3H), 2.04 (m, 4H), 

1.60 (s, 1.5H), 1.56 (s, 1.5H), 1.52 (s, 1.5H), 1.49 (s, 1.5H), 1.48 

(s, 1.5H), 1.44 (s, 1.5H), 1.37 (s, 3H), 1.34 (s, 1.5H), 1.16 (obs, 

6H) ppm. 13C{1H} (CD3CN/CDCl3, 100 MHz): 155.0 (CH), 154.7 

(CH), 97.1 (C), 96.9 (C), 96.6 (C), 96.4 (C), 76.1 (C, d, 18.8 Hz), 90 

74.8 (C, d, 19.6 Hz), 74.5 (C), 73.5 (C), 72.4 (CH, d, 7.2 Hz), 71.2 

(CH, d, 7.6 Hz), 45.4 (CH2, d, 12.9 Hz), 44.9 (CH2, d, 12.2 Hz), 

42.2 (C, d, 4.2 Hz), 41.6 (C), 40.6 (CH3), 40.3 (CH3), 39.2 (CH2), 

37.9 (CH2), 35.2 (CH2), 34.7 (CH2), 32.6 (CH2), 31.0 (CH2), 26.2 

(obs, 6 x CH3), 24.5 (CH3, d, 3.4 Hz), 23.8 (CH3, d, 3.8 Hz), 21.4 95 

(CH3), 21.3 (CH3), 17.3 (CH3), 16.9 (CH3), 13.4 (CH3), 12.8 (CH3) 

ppm. HRMS (ES): m/z 613.1674 (calc. 613.1661) [M – BF4]+, 

100%. 

[Rh(α,β-CgPAmMe)(acac)CO]BF4 

To a stirred solution of [Rh(acac)(CO)2] (55 mg, 2.73 x 10-4 mol) 100 

in CH2Cl2 was added [α,β-CgPAmMe]BF4 (100 mg, 2.14 x 10-4 

mol) as a solid. After an initial effervescence and color change to 

a light yellow the solution was left to stir for 2 hrs. The solvent was 

subsequently removed in vacuo and the solid residue triturated 

with dry Et2O. Recrystallization was effected by vapor diffusion of 105 

Et2O into a CH2Cl2 solution of the complex. Yield = 122 mg 

(64%). 31P{1H} (d6-acetone, 145 MHz): 113.3 (d, 1JP-Rh 204.1 Hz), 

105.8 (d, 1JP-Rh 207.3 Hz) ppm. 1H (d6-acetone, 400 MHz): 9.00 (s 

br, 1H), 5.59 (s, 0.5H), 5.55 (s, 0.5H), 4.54 (s br, 1H), 3.34 (s, 

1.5H), 3.33 (s, 1.5H), 3.27 (dd, 13.9, 6.0 Hz, 0.5H), 3.00 (dd, 14.1, 110 

6.0 Hz, 0.5H), 2.75-1.80 (m, 7H), 1.98 (s, 1.5H), 1.96 (s, 1.5H), 

1.93 (s br, 3H), 1.61 (d, 10.4 Hz, 1.5H), 1.59 (d, 11.8 Hz, 1.5H), 

1.43 (d, 15.9 Hz, 1.5H), 1.37 (s, 3H), 1.34 (s, 1.5H), 1.25 (s, 3H), 

1.16 (s, 3H) ppm. 13C{1H} (d6-acetone, 100 MHz): 188.8 (dd, 74.1, 

23.9 Hz, CO) 188.6 (s, COacac), 188.5 (s, COacac), 188.1 (dd, 74.6, 115 

23.7 Hz, CO), 160.2 (d, 7.4 Hz, CH), 159.9 (d, 3.7 Hz, CH), 101.3 



 
(d, 2.4 Hz, CH), 101.3 (d, 2.4 Hz, CH), 96.8 (C), 96.5 (C), 96.3 

(C), 96.2 (C), 77.9 (d, 16.3 Hz, C), 77.1 (d, 16.8 Hz, C), 73.8 (dd, 

12.4, 2.8 Hz, C), 73.5 (dd, 11.7, 2.8 Hz, C), 67.1 (d, 2.6 Hz, CH), 

65.3 (d, 5.5 Hz, CH), 46.3 (d, 13.8 Hz, CH2), 45.4 (d, 13.3 Hz, 

CH2), 42.3 (C), 41.8 (C), 39.5 (CH2), 39.2 (CH3), 38.7 (CH2), 38.6 5 

(CH3), 38.0 (CH2), 37.3 (CH2), 33.3 (CH2), 32.5 (CH2), 26.8 (CH3), 

26.7 (CH3), 26.2 (CH3), 26.0 (CH3), 25.5 (d, 3.9 Hz, CH3), 24.9 (d, 

8.1 Hz, CH3), 24.7 (d, 8.4 Hz, CH3), 24.2 (d, 3.2 Hz, CH3), 21.6 

(CH3), 21.5 (CH3), 17.9 (CH3), 17.7 (CH3), 12.9 (CH3), 12.8 (CH3) 

ppm. IR (solid): 2005 cm-1 (C≡O). HRMS (ES): m/z 611.1757 10 

(calc. 611.1757) [M – BF4]+, 100%. 

[Rh(α,β-CgPAmH)(CO)Cl2] 

To a stirred solution of [Rh(α,β-CgPAm)(acac)CO] (120 mg, 2.01 

x 10-4 mol) in CH2Cl2 (10 ml) was added one equivalent of BCl3 

(0.2 ml of a 1M solution in CH2Cl2). The yellow solution darkened 15 

considerably upon addition of the BCl3. After stirring overnight the 

volatiles were removed in vacuo and the residue crystallized from 

CH2Cl2 by vapor diffusion with Et2O. Crystallization from acetone 

in air was also effective giving yellow crystals of the complex. The 

same procedure using AlCl3 instead of BCl3 gave the same 20 

complex in similar yield. Yield = 60 mg (53%). 31P{1H} (CDCl3, 

145 MHz): 109.0 (d, 1JP-Rh 199.9 Hz), 105.1 (d, 1JP-Rh 205.8 Hz) 

ppm. 1H (CDCl3, 400 MHz): 9.88 (s br, 0.5H), 9.64 (s br, 1H), 9.09 

(t, 7.1 Hz, 0.5H), 4.50 (d, 4.4 Hz, 0.5H), 4.46 (d, 5.1 Hz, 0.5H), 

3.55 (dd, 14.0, 6.0 Hz, 0.5H), 3.22 (dd, 14.2, 6.1 Hz, 0.5H), 3.06 25 

(m, 1H), 2.40 (m, 0.5H), 2.22-1.76 (m, 5.5H), 1.75 (s, 1.5H), 1.71 

(s, 1.5H), 1.69 (d, 16.0 Hz, 1.5H), 1.61 (d, 15.5 Hz, 1.5H), 1.53 (s, 

1.5H), 1.37 (d, 5.4 Hz, 3H), 1.33 (s, 1.5H), 1.31 (s, 1.5H), 1.29 (s, 

1.5H), 1.24 (s, 1.5H), 1.19 (s, 1.5H), 1.08 (s, 1.5H), 1.05 (s, 1.5H) 

ppm. 13C{1H} (CDCl3, 100 MHz): 184.3 (dd, 73.2, 15.0 Hz, CO) 30 

183.8 (dd, 73.5, 15.3 Hz, CO), 162.8 (d, 29.0 Hz, CH), 159.8 (d, 

24.1 Hz, CH), 97.0 (C), 96.5 (C), 95.9 (C), 95.8 (C), 73.9 (d, 26.4 

Hz, C), 73.7 (d, 25.6 Hz, C), 66.7 (s, C), 66.5 (s, C), 66.1 (d, 7.8 

Hz, CH), 65.8 (d, 7.1 Hz, CH), 46.8 (d, 14.1 Hz, CH2), 45.6 (d, 

14.0 Hz, CH2), 42.4 (CH3), 41.9 (CH2), 41.0 (CH2), 39.5 (CH2), 35 

37.9 (CH2), 34.7 (CH2), 32.1 (CH2), 31.0 (CH2), 27.7 (CH3), 26.9 

(CH3), 26.7 (CH3), 26.6 (d, 3.4 Hz, CH3), 26.0 (d, 8.2 Hz, CH3), 

25.8 (d, 8.2 Hz, CH3), 25.7 (d, 2.8 Hz, CH3), 21.9 (s, CH3), 21.8 (s, 

CH3), 19.1 (s, CH3), 17.9 (CH3), 16.0 (CH3), 15.6 (CH3) ppm. IR 

1  a) B. Zhang, H. Jiao, D. Michalik, S. Kloß, L. M. Deter, D. Selent, A. 

Spannenberg, R. Franke, and A. Börner, ACS catalysis, 2016, 6, 

7554; b) P. W. N. M. van Leeuwen, J. C. Chadwick, Eds., 

Homogeneous Catalysts, Activity − Stability – Deactivation, Wiley-

VCH: Weinheim, Germany, 2011, pp 227−231. 
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2016, 49, 1797; d) Y. Canac, C. Maaliki, A. Ibrahim and R. Chauvin, 

New J. Chem., 2012, 36, 17; e) S. Gaillard and J.-L. Renaud, Dalton 

Trans., 2013, 42, 7255; f) M. Azouri, J. Andrieu, M. Piquet and H. 

Cattey, Inorg. Chem., 2009, 48, 1236; g) K. Schwedtmann, R. 

Schoemaker, F. Hennersdorf, A. Bauzá, A. Frontera, R. Weiss, and J. 

J. Weigand, Dalton Trans., 2016, 45, 11384. 
3  a) J. Petuškova, H. Bruns and M. Alcarazo, Angew. Chem., Int. Ed., 

2011, 50, 3799; b) G. Mehler, P. Linowski, J. Carreras, A. Zanardi, J. 

W. Dube and M. Alcarazo, Chem. Eur. J., 2016, 22, 15320. 
4  H. Tinnermann, C. Wille and M. Alcarazo, Angew. Chem., Int. Ed., 

2014, 53, 8732. 
5  E. Haldón, Á. Kozma, H. Tinnermann, L. Gu, R. Goddard and M. 
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(solid): 1990 cm-1 (C≡O). HRMS (ES): m/z 574.1081 (calc. 40 

574.1109) [M – Cl + MeCN]+, 100%. 

[Pt(α,β-CgPAmMe)Cl3] 

A mixture of finely ground K2[PtCl4] (107 mg, 2.57 x 10-4 mol) 

and [α,β-CgPAmMe]BF4 (120 mg, 2.57 x 10-4 mol) in MeCN (5 

ml) was stirred for 24 hrs. The mixture was subsequently filtered 45 

and the volatiles removed to give a yellow solid which was 

crystallized from acetone by vapor diffusion of Et2O. Yield = 100 

mg (57%). 31P{1H} (CD3CN, 145 MHz): 55.2 (s, 1JP-Pt 4284.3 Hz), 

49.2 (s, 1JP-Pt 4334.1 Hz) ppm. 1H (CD3CN, 400 MHz): 9.36 (d, 7.4 

Hz, 0.5H), 8.98 (d, 7.9 Hz, 0.5H), 4.52 (d, 5.1 Hz, 0.5H), 4.48 (s 50 

br, 0.5H), 3.48 (dd, 14.3, 6.2 Hz, 0.5H), 3.32 (s, 1.5H), 3.28 (s, 

1.5H), 3.26 (dd, 14.6, 6.4 Hz, 0.5H), 2.94 (m, 1H), 2.60-1.90 (m, 

6H), 2.19 (s, 1.5H), 2.11 (s, 3H), 1.80 (d, 13.9 Hz, 1.5H), 1.78 (d, 

5.4 Hz, 1.5H), 1.75 (d, 5.0 Hz, 1.5H), 1.60 (d, 15.0 Hz, 1.5H), 1.42 

(s, 1.5H), 1.37 (s, 1.5H), 1.34 (s, 3H), 1.18 (s, 1.5H), 1.15 (1.5H), 55 

1.13 (1.5H) ppm. The poor solubility of the sample precluded 

acquisition of acceptable 13C NMR data. HRMS (ES): m/z 

686.1601 (calc. 686.1576) [M – Cl + MeCN]+, 100%. 
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